精英家教网 > 高中数学 > 题目详情

【题目】某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入是生产时间个月的二次函数是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元

(1)求前8个月的累计生产净收入的值;

(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入

【答案】(1);(2)经过9个月投资开始见效。

【解析】试题分析: (1)根据g(3)得到k,再计算g(5)和g(5)﹣g(4),而g(8)=g(5)+3[g(5)﹣g(4)],从而得到结果

(2)求出投资前后前n个月的总收入,列不等式解出n的范围即可.

试题解析

(1)据题意,解得

第5个月的净收入为 万元,

所以, 万元

2

要想投资开始见效,必须且只需

时,

不成立;

时,

验算得, 时,

所以,经过9个月投资开始见效。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 底面 ,且 .点在棱上,平面与棱相交于点

)求证: 平面

)求证: 平面

)求三棱锥的体积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程为,( 为参数)

(1)求曲线的参数方程和曲线的普通方程;

(2)求曲线上的点到曲线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项

(1)求证:数列为等比数列;

(2)记,若Sn<100,求最大正整数n

(3)是否存在互不相等的正整数msn,使msn成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)确定函数在定义域上的单调性,并写出详细过程;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列为递增的等比数列,

数列满足

(Ⅰ)求数列的通项公式;(Ⅱ)求证: 是等差数列;

(Ⅲ)设数列满足,且数列的前项和,并求使得对任意都成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 为参数)和定点 是此圆锥曲线的左、右焦点.

(1)以原点为极点,以轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;

(2)经过且与直线垂直的直线交此圆锥曲线 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽(约公元 225 —295 年)是魏晋时期伟大的数学家,中国古典数学理论的奠基人之一,他的杰作《九章算术注》和《海岛算经》是中国宝贵的古代数学遗产. 《九章算术·商功》中有这样一段话:斜解立方,得两壍堵. 斜解壍堵,其一为阳马,一为鳖臑.” 刘徽注:此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.” 其实这里所谓的鳖臑(biē nào,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥. 如图,在三棱锥中, 垂直于平面 垂直于,且 ,则三棱锥的外接球的球面面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点M的坐标为,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为的直线l经过点M

(I)求直线l和曲线C的直角坐标方程:

(II)P为曲线C上任意一点,直线l和曲线C相交于AB两点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案