精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若A>B,则下列关系中不一定正确的是③.
①sinA>sinB②cosA<cosB③sin2A>sin2B④cos2A<cos2B.

分析 ①通过A>B,利用正弦定理,推出sinA>sinB.②由A>B,通过余弦函数的单调性可得cosA<cosB;③由A>B通过举反例说明sin2A>sin2B不正确即可;④由A>B,通过正弦定理以及同角三角函数的基本关系式,以及二倍角的余弦函数推出cos2A<cos2B.

解答 解:由①,∵A>B,则a>b,利用正弦定理可得 a=2rsinA,b=2rsinB,故sinA>sinB.故①正确;
由②,A>B,△ABC中,A、B∈(0,π),余弦函数是减函数,所以cosA<cosB,故②正确;
对于③,例如A=60°,B=45°,满足A>B,但不满足sin2A=$\frac{\sqrt{3}}{2}$,sin2B=1,所以sin2A>sin2B,③不正确;
对于④,因为在△ABC中,A>B,所以a>b,利用正弦定理可得a=2rsinA,b=2rsinB,故sinA>sinB>0,所以
sin2A>sin2B,可得 1-2sin2A<1-2sin2B,由二倍角公式可得:cos2A<cos2B,故④正确.
故答案为:③.

点评 本题考查正弦函数的单调性,正弦定理,同角三角函数的基本关系,三角形中有大角对大边,将命题转化是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.计算:
(1)$\root{4}{{{{({\sqrt{5}-4})}^4}}}+\root{3}{{{{({\sqrt{5}-4})}^3}}}+{2^{-2}}×{({2\frac{1}{4}})^{-\frac{1}{2}}}-{({0.01})^{0.5}}$
(2)$\frac{{\root{3}{{{a^{\frac{9}{2}}}\sqrt{{a^{-3}}}}}}}{{\sqrt{\root{3}{{{a^{-7}}}}•\root{3}{{{a^{13}}}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函数.
(Ⅰ)确定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;
(Ⅲ)若对任意的t∈(1,4),不等式f(2t-3)+f(t-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2+21nx.
(1)求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值是-2,求a的值.
(3)记g(x)=f(x)+(a-1)lnx+1,当a≤-2时,若对任意x1,x2∈(0,+∞),总有|g(x1)-g(x2)|≥k|x1-x2|成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,已知∠A=135°,∠B=30°,那么a:b的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在[0,+∞)上的函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},\sqrt{x}≥|x-2|}\\{|x-2|,\sqrt{x}<|x-2|}\end{array}\right.$,则满足不等式1≤f(x)≤2的x的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的体积与球O的体积的比值为$\frac{9}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,四边形ABCD为平行四边形,E,F分别为所在边中点,证明:EF∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=mx2+2(m+1)x+m+3负零点的个数为1,则m的取值范围是m=1或-3≤m≤0.

查看答案和解析>>

同步练习册答案