精英家教网 > 高中数学 > 题目详情

设函数.(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.

(Ⅰ);(Ⅱ)的取值范围是

解析试题分析:(Ⅰ)求出导数,根据导数大于0求得的单调递增区间.
(Ⅱ)令.利用导数求出的单调区间和极值点,画出其简图,结合函数零点的判定定理找出所满足的条件,由此便可求出的取值范围.
试题解析:(Ⅰ)函数的定义域为

,则使的取值范围为,
故函数的单调递增区间为  
(Ⅱ)∵,
 
,  
,且,
,由.
在区间内单调递减,在区间内单调递增, 
在区间内恰有两个相异实根   
解得:.
综上所述,的取值范围是  
考点:1、导数及其应用;2、函数的零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数为常数)的图象过原点,且对任意总有成立;
(1)若的最大值等于1,求的解析式;
(2)试比较的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
;    ②
试分别分析这两个函数模型是否符合公司要求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)判断上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,满足,且方程有两个相等的实根.
(1)求函数的解析式;
(2)当时,求函数的最小值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的图象如图所示.

(1) 求函数的解析式;
(2) 设函数,且,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的表达式;
(Ⅱ)判断并证明函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义域为的函数,其导函数为.若对,均有,则称函数上的梦想函数.
(Ⅰ)已知函数,试判断是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数)为其定义域上的梦想函数,求的取值范围;
(Ⅲ)已知函数)为其定义域上的梦想函数,求的最大整数值.

查看答案和解析>>

同步练习册答案