精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$.
(1)求f(x+1)的解析式;
(2)解不等式;2x+f(x+1)≤5.

分析 (1)将x换为x+1,即可得到所求解析式;
(2)讨论x>-1,x=-1,x<-1,解不等式求并集,即可得到所求解集.

解答 解:(1)由f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$可得,
f(x+1)=$\left\{\begin{array}{l}{x-1,x>-1}\\{0,x=-1}\\{x+3,x<-1}\end{array}\right.$;
(2)2x+f(x+1)≤5,
当x+1>0,即x>-1,可得2x+x-1≤5,
解得-1<x≤2;
当x+1=0,即x=-1,可得2x≤5,
即有x=-1成立;
当x+1<0,即x<-1,可得2x+x+3≤5,
解得x≤$\frac{2}{3}$,即为x<-1.
综上可得,不等式的解集为{x|x≤2}.

点评 本题考查分段函数的运用:求解析式和解不等式,注意各段的解析式和运用,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在(0,+∞)上的增函数,且满足:x>0,都有f(f(x)-log3x)=4成立,则f(9)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在空间四边形ABCD中,AC⊥BD,M、N分别是AB、CD的中点,AC=4,BD=3,求:MN和BD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f($\frac{x}{5}$)=$\frac{1}{2}f(x)$,且当0≤x1≤x2≤1时,f(x1)≤f(x2),则f($\frac{1}{2015}$)等于(  )
A.$\frac{1}{2}$B.$\frac{1}{16}$C.$\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四边形ABCD是空间四边形,E、H分别是AB、AD的中点,F、G分别是边CB、CD上的点,且$\overrightarrow{CF}$=$\frac{2}{3}$$\overrightarrow{CB}$,$\overrightarrow{CG}$=$\frac{2}{3}$$\overrightarrow{CD}$,求证:四边形EFGH是梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知周期为2π的偶函数f(x),当0≤x≤π时,f(x)=sinx,则f($\frac{3π}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知两角的和为1弧度,且两角的差为1°,则这两个角的弧度数分别是$\frac{1}{2}+\frac{π}{360}$;$\frac{1}{2}-\frac{π}{360}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足a1+3a2+32a3+…+3n-1an=$\frac{n}{3}$,a∈N*.bn=$\frac{n}{{a}_{n}}$,求:
(1)数列{an}的通项公式an
(2)数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+2x,则函数$g(x)=f(x)+\frac{1}{2}x-1$零点的集合为(  )
A.{1,-1,0}B.{-2,2,0}C.$\{2,-\frac{1}{2},\frac{{-5+\sqrt{41}}}{4}\}$D.$\{2,\frac{1}{2},\frac{{-5-\sqrt{41}}}{4}\}$

查看答案和解析>>

同步练习册答案