精英家教网 > 高中数学 > 题目详情

【题目】2002年国际数学家大会在北京召开,会标是以我国古代数学家赵爽的弦图为基础设计.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图)如果小正方形的边长为1,大正方形的边长为5,直角三角形中较小的锐角为,则 ( )

A. B. C. D.

【答案】B

【解析】分析根据大正方形的面积求得直角三角形的斜边,根据大正方形减去小正方形的面积即四个直角三角形的面积和,求得两条直角边的乘积,再根据勾股定理知直角三角形的两条直角边的平方和等于25,联立解方程组可得两条直角边,则可求得的值,进而即可化简求值得解.

详解根据题意,大正方形的边长为5,小正方形的边长为1,

可得三角形的面积为

设三角形的两直角边为则有

联立解得所以

从而可以求得

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 ,若 的必要不充分条件,则实数 的取值范围是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组: ,并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DBAC,点M是棱BB1上一点.

(1)求证:B1D1平面A1BD;

(2)求证:MDAC;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必需等待一段时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部 45 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加书法社团

2

30

(1)从该班随机选 1 名同学,求该同学至少参加上述一个社团的概率;

(2)在既参加书法社团又参加演讲社团的 8 名同学中,有 5 名男同学,3名女同学.现从这 5 名男同学和 3 名女同学中各随机选 1 人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在上的函数,其图象关于轴对称,当时,有,且当时,,若函数恰有个不同的零点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14)

已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

(Ⅲ) 如果对任意正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案