精英家教网 > 高中数学 > 题目详情

【题目】已知是同一平面内的三个向量,下列命题中正确的是(

A.

B.,则

C.两个非零向量,若,则共线且反向

D.已知,且的夹角为锐角,则实数的取值范围是

【答案】AC

【解析】

根据平面向量数量积定义可判断A;由向量垂直时乘积为0,可判断B;利用向量数量积的运算律,化简可判断C;根据向量数量积的坐标关系,可判断D.

对于A,由平面向量数量积定义可知,则,所以A正确,

对于B,当都和垂直时,的方向不一定相同,大小不一定相等,所以B错误,

对于C,两个非零向量,若,可得,即

则两个向量的夹角为,则共线且反向,故C正确;

对于D,已知的夹角为锐角,

可得可得,解得

的夹角为0时,,所以

所以的夹角为锐角时,故D错误;

故选:AC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的离心率为,右准线方程为

求椭圆C的标准方程;

已知斜率存在且不为0的直线l与椭圆C交于AB两点,且点A在第三象限内为椭圆C的上顶点,记直线MAMB的斜率分别为

若直线l经过原点,且,求点A的坐标;

若直线l过点,试探究是否为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆Cy轴相切于点T(0,2),与x轴的正半轴交于两点 (在点的左侧),且.

(1)求圆C的方程;(2)过点任作一直线与圆O 相交于两点,连接,求证: 定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,DE分别为ABBC的中点,点F在侧棱B1B上,且.

求证:(1)直线DE平面A1C1F

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由上半椭圆 )和部分抛物线 )连接而成, 的公共点为 ,其中的离心率为

(1)求 的值;

(2)过点的直线 分别交于点 (均异于点 ),是否存在直线,使得以为直径的圆恰好过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项为1的等差数列,数列满足,且.

(1)求数列的通项公式;

(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论的单调性;

(2)设,若关于的不等式上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为

(1)求直线和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数的图象的两相邻对称轴间的距离为.

1)求的值;

2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求函数的单调递减区间.

查看答案和解析>>

同步练习册答案