精英家教网 > 高中数学 > 题目详情
20.如图所示,点D 在线段AB 上,∠CAD=30°,∠CDB=50°.给出下列三组条件(给出线段的长度):
①AD,DB
②AC,DB
③CD,DB
其中,能使△ABC 唯一确定的条件的序号为①②③.(写出所有所和要求的条件的序号)

分析 由已知及正弦定理可得$\frac{AD}{sin20°}=\frac{AC}{sin130°}=\frac{CD}{sin30°}$,结合余弦定理即可得解.

解答 解:∵∠CAD=30°,∠CDB=50°.
∴可得:∠ACD=20°,
∴在△ACD中,可得$\frac{AD}{sin20°}=\frac{AC}{sin130°}=\frac{CD}{sin30°}$,即给一边,可求另外两边,进而利用正弦定理,余弦定理可求△ABC的各边及角.
故答案为:①②③.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两焦点与短轴一端点组成一正三角形三个顶点,若焦点到椭圆上点的最大距离为$3\sqrt{3}$,则分别以a,b为实半轴长和虚半轴长,焦点在y轴上的双曲线标准方程为$\frac{{y}^{2}}{12}-\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.

(I)求证:CE⊥平面A1BCD1
(II)求异面直线BD1与A1E所成角的大小;
(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.昌平区在滨河公园举办中学生冬季越野赛.按年龄段将参赛学生分为A,B,C三个组,各组人数如下表所示.组委会用分层抽样的方法从三个组中选出6名代表.
    组别AB    C
    人数100150    50
( I)  求A,B,C三个组各选出代表的个数;
( II) 若从选出的6名代表中随机抽出2人在越野赛闭幕式上发言,求这两人来自同一组的概率P1
( III)若从所有参赛的300名学生中随机抽取2人在越野赛闭幕式上发言,设这两人来自同一组的概率为P2,试判断P1与P2的大小关系(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,“A<30°”是“$sinA<\frac{1}{2}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E为棱PD的中点.
(Ⅰ)求证:CD⊥AE;
(Ⅱ)求证:平面PAB⊥平面PAD;
(Ⅲ)试判断PB与平面AEC是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知复数z满足(1-i)z=2i,其中i为虚数单位,则z的模为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x>1}\\{\frac{1}{{2}^{x-1}},x≤1}\end{array}\right.$,则f(f($\sqrt{2}$))等于(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

同步练习册答案