精英家教网 > 高中数学 > 题目详情
19.已知幂函数y=f(x)的图象过(9,3)点,则$f(\frac{1}{3})$=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{{\sqrt{3}}}{3}$

分析 把幂函数y=xα的图象经过的点(9,3)代入函数的解析式,求得α的值,即可得到函数解析式,从而求得f($\frac{1}{3}$)的值.

解答 解:∵已知幂函数y=xα的图象过点(9,3),
则 9α=3,∴α=$\frac{1}{2}$,故函数的解析式为 y=f(x)=${x}^{\frac{1}{2}}$,
∴f($\frac{1}{3}$)=${(\frac{1}{3})}^{\frac{1}{2}}$=$\frac{\sqrt{3}}{3}$,
故选:D.

点评 本题主要考查用待定系数法求函数的解析式,根据函数的解析式求函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.f(x)为R上奇函数,且x>0时,f(x)=x2-2x,则f(-3)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,-6),若$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.5B.$5\sqrt{2}$C.6D.50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,则球O的表面积等于(  )
A.16πB.20πC.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:
①f(x)=x2;   ②f(x)=2x;    ③f(x)=$\sqrt{x}$;    ④f(x)=lnx.
则其中是“保等比数列函数”的f(x)的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知两等差数列{an}、{bn}的前n项和分别为Sn、Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{7n-2}$,则$\frac{{a}_{10}}{{b}_{10}}$=(  )
A.$\frac{23}{68}$B.$\frac{41}{131}$C.$\frac{21}{61}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将十进制数69转化为二进制数:69(10)1000101(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用二分法求函数f(x)=log2x+a-2x零点的近似值时,如果确定零点所处的初始区间为($\frac{1}{4}$,$\frac{1}{2}$),那么a的取值范围为(  )
A.(-∞,2)B.($\frac{5}{2}$,+∞)C.(2,$\frac{5}{2}$)D.(-∞,2)∪($\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设一个半球的半径为R,则其内接圆柱的最大侧面积是πR2

查看答案和解析>>

同步练习册答案