精英家教网 > 高中数学 > 题目详情
14.如图所示,已知△ABC中,∠C=90°,AC=6,BC=8,D为边AC上的一点,K为BD上的一点,且∠ABC=∠KAD=∠AKD,则DC=$\frac{7}{3}$.

分析 求出tan∠ABC=$\frac{3}{4}$,tan∠BDC=tan2∠ABC,即可求出DC.

解答 解:由题意,tan∠ABC=$\frac{3}{4}$,
∵∠ABC=∠KAD=∠AKD,
∴∠BDC=2∠ABC,
∴tan∠BDC=tan2∠ABC=$\frac{2×\frac{3}{4}}{1-\frac{9}{16}}$=$\frac{24}{7}$
∴$\frac{8}{DC}$=$\frac{24}{7}$
∴DC=$\frac{7}{3}$.
故答案为:$\frac{7}{3}$.

点评 本题考查二倍角正切函数的运用,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若f(x)=1+lgx,g(x)=x2,那么使2f[g(x)]=g[f(x)]的x的值是${10}^{1±\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若p的否命题是命题q的逆否命题,则命题p是命题q的(  )
A.逆命题B.否命题C.逆否命题D.p与q是同一命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有一次命中的概率为(  )
A.0.25B.0.2C.0.35D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,设复数z1=1+i,z2=1+2i,则$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{cos2x}\\{1}&{sin2x}\end{array}|$,则要得到函数f(x)的图象,只需将y=2cos2x的图象(  )(  )
A.向左平移$\frac{2π}{3}$个单位B.向左平移$\frac{π}{3}$个单位
C.向右平移$\frac{2π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合P={x∈Z||x-1|<2},Q={x∈Z|-1≤x≤2},则P∩Q=(  )
A.{0,1,2}B.{-1,0,1}C.{-1,0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{1}{\sqrt{lo{g}_{2}x}}$的定义域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC的三边成等差数列,最大边长为26,且它所对角的余弦值为$\frac{1}{6}$,则最小边长为(  )
A.18B.24C.12D.16

查看答案和解析>>

同步练习册答案