精英家教网 > 高中数学 > 题目详情
(1)已知a,b∈R,求证2(a2+b2)≥(a+b)2
(2)用分析法证明:
6
+
7
>2
2
+
5
(1)证明:∵a,b∈R,且 2(a2+b2)-(a+b)2 =a2+b2 -2ab=(a-b)2≥0,
∴2(a2+b2)≥(a+b)2 成立.
(2)证明:要证
6
+
7
>2
2
+
5
,只要证 13+2
42
>13+4
10
,即证
42
>2
10

即证 42>40.
而42>40显然成立,故
6
+
7
>2
2
+
5
 成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知a,b∈R,求证2(a2+b2)≥(a+b)2
(2)用分析法证明:
6
+
7
>2
2
+
5

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题 
(1)已知a,b∈R,若M=
-1a
b3
所对应的变换TM把直线L:2x-y=3变换为自身,求实数a,b,并求M的逆矩阵.
(2)已知直线l的参数方程为
x=
1
2
t
y=
2
2
+
3
2
t
(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-
π
4
).
(Ⅰ)求直线l的倾斜角;
(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)下列命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<loga2<logb2,则a>b>1;
③已知a,b∈R*,2a+b=1,则
2
a
+
1
b
有最小值8;
④已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于-1.
其中,正确命题的序号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知a,b∈R,求证2(a2+b2)≥(a+b)2
(2)用分析法证明:数学公式

查看答案和解析>>

同步练习册答案