精英家教网 > 高中数学 > 题目详情
设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,若在直线x=
a2
c
上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是______.
设准线与x轴的交点为Q,连结PF2
∵PF1的中垂线过点F2
∴|F1F2|=|PF2|,可得|PF2|=2c,
∵|QF2|=
a2
c
-c,且|PF2|≥|QF2|,
∴2c≥
a2
c
-c,两边都除以a得2•
c
a
a
c
-
c
a

即2e≥
1
e
-e,整理得3e2≥1,解得e
3
3

结合椭圆的离心率e∈(0,1),得
3
3
≤e<1.
故答案为:(
3
3
,1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)双曲线与椭圆
x2
27
+
y2
36
=1
有相同焦点,且经过点(
15
,4),求其方程.
(2)椭圆过两点(
6
,1),(-
3
,-
2
),求其方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近的端点的距离是
10
-
5
,则此椭圆的方程是:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(
2
-1),求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点在x轴上,长轴长为12,离心率为
1
3
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点,若椭圆C上存在点P,使线段PF1的垂直平分线过点F2,则椭圆离心率的取值范围是(  )
A.(0,
1
3
]
B.(
1
2
2
3
C.[
1
3
,1)
D.[
1
3
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:从椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点M向x轴作垂线,恰好通过椭圆的左焦点F1(-c,0),且
.
AB
.
OM
,则a,b,c必满足______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F1,左焦点为F2,若椭圆上存在一点P,满足线段PF1相切于以椭圆的短轴为直径的圆,切点为线段PF1的中点,则该椭圆的离心率为(  )
A.
5
3
B.
2
3
C.
2
2
D.
5
9

查看答案和解析>>

同步练习册答案