【题目】必修四第一章我们借助圆的对称性学习了诱导公式,如在直观上讲单位圆中,当两个角的终边关于轴对称时,这两个角的正弦值相等;再如在单位圆中,当两个角的终边关于原点中心对称时,这两个角的正弦值互为相反数.观察这些诱导公式,可以发现它们都是特殊角与任意角的三角函数的恒等关系.我们如果将特殊角换为任意角,那么任意角与的和(或差)的三角函数与,的三角函数会有什么关系呢?如果已知,的正弦余弦,能由此推出的正弦余弦吗?下面是某高一学生在老师的指导下自行探究与角的正弦余弦之间的关系的部分过程,请你顺着这位同学的思路以及老师的提示将探究过程完善,并完成后面的题目.探究过程如下:
不妨令如图,设单位圆与轴的正半轴相交于点以轴的非负半轴为始边作角它们的终边分别与单位圆相交于点连接若把扇形绕着点旋转角,则点分别与点重合. ……(未完待续)
(提示一:任意一个圆绕着其圆心旋转任意角后都与原来的圆重合,这一性质叫做圆的旋转对称性)(提示二:平面上任意两点间的距离公式)
(1)完善上述探究过程;
(2)利用(1)中的结论解决问题:已知是第三象限角,求的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左.右焦点为,离心率为.直线与轴,轴分别交于点,是直线与椭圆的一个公共点,是点关于直线的对称点,设.
(1)证明:;
(2)若,的周长为;写出椭圆的方程;
(3)确定的值,使得是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文)(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于6或5则中二等奖,等于4则中三等奖,其余结果为不中奖.
(1)求中二等奖的概率.
(2)求不中奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中,三个内角,,所对的边分别是,,.
(1)证明:;
(2)在①,②,③这三个条件中任选一个补充在下面问题中,并解答
若,,________,求的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年某市有2万多文科考生参加高考,除去成绩为分(含分)以上的3人与成绩为分(不含分)以下的3836人,还有约1.9万文科考生的成绩集中在内,其成绩的频率分布如下表所示:
分数段 | ||||
频率 | 0.108 | 0.133 | 0.161 | 0.183 |
分数段 | ||||
频率 | 0.193 | 0.154 | 0.061 | 0.007 |
(Ⅰ)试估计该次高考成绩在内文科考生的平均分(精确到);
(Ⅱ)一考生填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取3人,并在同分数考生中随机录取,求该考生不被该志愿录取的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒, )表示这个开学季内的市场需求量, (单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量的平均数;
(2)将表示为的函数;
(3)根据直方图估计利润不少于4000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有以下四种变换方式:
向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍纵坐标不变;
向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍纵坐标不变;
把各点的横坐标缩短到原来的倍纵坐标不变,再向左平移个单位长度;
把各点的横坐标缩短到原来的倍纵坐标不变,再向左平移个单位长度;
其中能将函数的图象变为函数的图象的是
A. 和 B. 和 C. 和 D. 和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴, 的中点为,过且垂直于线段的直线交射线于点
(I)证明:点在直线上;
(Ⅱ)当四边形是平行四边形时,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com