精英家教网 > 高中数学 > 题目详情

【题目】(1)已知函数ylg(x22xa)的定义域为R,求实数a的取值范围;

(2)已知函数f(x)lg[(a2-1)x2+(2a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.

【答案】(1)(1,+∞);(2(,-)

【解析】试题分析:(1)由题意得一元二次不等式恒成立,再根据二次函数图像得判别式小于零(2)由题意得不等式恒成立,再分类讨论一次与二次函数,最后根据二次函数图像得判别式小于零

试题解析:(1)因为ylg(x22xa)的定义域为R

所以x22xa>0恒成立,所以Δ44a<0

所以 a>1.

a的取值范围是(1,+)

(2)依题意(a21)x2(2a1)x1>0对一切xR恒成立.

a210时,

解得a<.

a210时,显然(2a1)x1>0,对xR不恒成立.

所以a的取值范围是(,-)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知yf(x)是定义在R上的奇函数x<0f(x)12x.

(1)求函数f(x)的解析式;

(2)画出函数f(x)的图像;

(3)写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)若曲线与曲线在点处有相同的切线,试讨论函数的单调性;

(2)若,函数上为增函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量m=(cosx,-1),n=,函数f(x)=(m+n)·m.

(1)求函数f(x)的最小正周期;

(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=,且f(A)恰是函数f(x)在上的最大值,求A,b和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)2log3xx[1,9],求y[f(x)]2f(x2)的最大值,及y取最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点 再取两个动点,且

(Ⅰ)求直线交点M的轨迹C的方程;

(Ⅱ)过的直线与轨迹C交于P,Q,过P轴且与轨迹C交于另一点NF为轨迹C的右焦点,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:

(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;

(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租型车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元.已知甲、乙两用户该月用水量分别为5x,3x吨.

(1)y关于x的函数;

(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

同步练习册答案