精英家教网 > 高中数学 > 题目详情
18.已知A,B为椭圆$C:\frac{x^2}{2}+{y^2}=1$上两个不同的点,O为坐标原点.设直线OA,OB,AB的斜率分别为k1,k2,k.
(Ⅰ) 当k1=2时,求|OA|;
(Ⅱ) 当k1k2-1=k1+k2时,求k的取值范围.

分析 (Ⅰ)由直线OA斜率k1=2,得直线OA的方程为y=2x,代入椭圆方程得出交点,再利用两点之间的距离公式即可得出.
(Ⅱ) 设点A(x1,y1),B(x2,y2),直线AB的方程为y=kx+b.与椭圆方程联立可得(1+2k2)x2+4kbx+2b2-2=0,△>0,再利用根与系数的关系、斜率计算公式即可得出.

解答 解:(Ⅰ)由直线OA斜率k1=2,得直线OA的方程为y=2x,
代入椭圆方程得${x^2}=\frac{2}{9}$,
∴$|{OA}|=\sqrt{{x^2}+{{(2x)}^2}}=\frac{{\sqrt{10}}}{3}$.
(Ⅱ) 设点A(x1,y1),B(x2,y2),直线AB的方程为y=kx+b.
由$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=kx+b\end{array}\right.$消去y得(1+2k2)x2+4kbx+2b2-2=0,
故△=16k2-8b2+8>0,且$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{4kb}{{2{k^2}+1}}\\{x_1}{x_2}=\frac{{2{b^2}-2}}{{2{k^2}+1}}.\end{array}\right.$①,

由k1+k2=k1k2-1得x2y1+x1y2=y1y2-x1x2
将y1=kx1+b,y2=kx2+b代入得$({k^2}-2k-1){x_1}{x_2}+b(k-1)({x_1}+{x_2})+{b^2}=0$,②
将①代入②得b2=-2k2+4k+2,
联立△>0与b2≥0得$\left\{\begin{array}{l}4{k^2}-4k-1>0\\-2{k^2}+4k+2≥0\end{array}\right.$,

解得k的取值范围为$[{1-\sqrt{2},\frac{{1-\sqrt{2}}}{2}})∪({\frac{{1+\sqrt{2}}}{2},1+\sqrt{2}}]$.

点评 本题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知m,n是不同的直线,α,β是不同的平面,则下列结论正确的是(  )
A.若m∥α,n∥α则m∥nB.若m?α,m∥n,则n∥αC.若m⊥α,α⊥β,则m∥βD.若m⊥α,n∥α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是定义在R上的增函数,其导函数为f′(x),且满足$\frac{f(x)}{f′(x)}$+x<1,下面不等式正确的是(  )
A.f(x2)<f(x-1)B.(x-1)f(x)<xf(x+1)C.f(x)>x-1D.f(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1,F2,过F2的直线与双曲线C的右支相交于P,Q两点,若PQ⊥PF1,且|PF1|=|PQ|,则双曲线的离心率e=(  )
A.$\sqrt{2}$+1B.2$\sqrt{2}$+1C.$\sqrt{5+2\sqrt{2}}$D.$\sqrt{5-2\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x),当x∈(0,1]时满足如下性质:f(x)=2lnx且$f(x)=2f(\frac{1}{x})$,若在区间$[\frac{1}{3},3]$内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{4ln3}{3},\frac{4}{e})$C.$(0,\frac{1}{e})$D.$(0,\frac{4}{e})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用区间表示下列集合:
(1)$\{x\left|{-\frac{1}{2}≤x<5\}}\right.$=[-$\frac{1}{2}$,5).
(2){x|x<1或2<x≤3}=(-∞,1)∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给定下列命题:
①“若k>0,则方程x2+2x-k=0有实数根”的逆否命题;
②“若A=B,则sinA=sinB”的逆命题;
③“若$\frac{1}{a}<\frac{1}{b}<0,则\;ab<b$2”的逆否命题;
④“若xy=0,则x,y中至少有一个为零”的否命题.
⑤“若$\frac{b}{a}>\frac{a}{b},则\;a<b<0$”的逆命题.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B,C,D是球面上的四个点,其中A,B,C在同一圆周上,若D不在A,B,C所在的圆周上,则从这四点中的任意两点的连线中取2条,这两条直线是异面直线的概率等于(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下面四个结论:
①y=sin|x|的图象关于原点对称;
②y=sin(|x|+2)的图象是把y=sin|x|的图象向左平移2个单位而得到的;
③y=sin(x+2)的图象是把y=sinx的图象向左平移2个单位而得到的;
④y=sin(x+2)的图象是由y=sin(x+2)(x≥0)的图象及y=-sin(x-2)(x<0)的图象组成的.
其中,正确的结论有③(请把正确结论的序号都填上)

查看答案和解析>>

同步练习册答案