精英家教网 > 高中数学 > 题目详情

(本题12分)如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
⑵    证:平面A1CB⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。


由正四棱柱得BDAC,BDAA1推出BD面A1 AC ,A1CBD ,又A1B1面BB1 CC,BE得到BEA1B1又BEB1C, BE面A1B1C,平面A1CB⊥平面BDE;;
 

解析试题分析:
正四棱柱得BDAC,BDAA1BD面A1 AC ,又A1 C面A1 AC,
A1CBD ,又A1B1面BB1 CC,BE面BB1 CC,BEA1B1又BEB1C,
 BE面A1B1C,A1 C面A1B1C, BEA1 C,又A1 C面BDE,又A1 C面A1BC
平面A1CB⊥平面BDE;
⑵以DA、DC、DD1分别为x、y、z轴,建立坐标系,则
 
,设A1C平面BDE=K,由⑴可知,∠A1BK为A1B与平面BDE所成角,∴ 
考点:本题主要考查立体几何中的平行关系、垂直关系,角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题通过建立空间直角坐标系,利用向量的坐标运算,简化了证明过程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

圆柱的高是8cm,表面积是130πcm2,求它的底面圆半径和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某几何体的三视图和直观图如图所示.

(Ⅰ)求证:平面平面
(Ⅱ)若是线段上的一点,且满足,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,多面体的直观图及三视图如图所示,分别为的中点.

(1)求证:平面
(2)求证:
(3)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
如图的几何体中,平面平面,△为等边三角形, 的中点.

(1)求证:平面
(2)求证:平面平面
(3)求此几何体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥中,的中点,,且,又.

(1) 证明:;
(2) 证明:;
(3) 求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,沿等腰直角三角形的中位线,将平面折起,平面⊥平面,得到四棱锥,设的中点分别为


(1)求证:平面⊥平面
(2)求证: 
(3)求平面与平面所成锐二面角的余弦值。

查看答案和解析>>

同步练习册答案