精英家教网 > 高中数学 > 题目详情
已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.
(Ⅰ)=4,=2,=2,=2;(Ⅱ)

试题分析:(Ⅰ)求四个参数的值,需寻求四个独立的条件,依题意代入即可求出的值;(Ⅱ)构造函数,转化为求函数的最值,记==(),由已知,只需令的最小值大于0即可,先求的根,得,只需讨论和定义域的位置,分三种情况进行,当时,将定义域分段,分别研究其导函数的符号,进而求最小值;当时,的符号确定,故此时函数具有单调性,利用单调性求其最小值即可.
试题解析:(Ⅰ)由已知得,而,代入得,故=4,=2,=2,=2;
(Ⅱ)由(Ⅰ)知
设函数==(),
==, 由题设知,即,令,得

(1)若,则,∴当时,,当时,,记时单调递减,时单调递增,故时取最小值,而,∴当时,,即
(2)若,则,∴当时,,∴单调递增,而.∴当时,,即
(3)若时,,则单调递增,而==<0,
∴当≥-2时,不可能恒成立,
综上所述,的取值范围为[1,].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)已知,若,求的值;
(Ⅱ)设,当时,求上的最小值;
(Ⅲ)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克)与时间(小时)成正比;药物释放完毕后,的函数关系式为为常数),如图所示,根据图中提供的信息,回答下列问题:

(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室.那从药物释放开始,至少需要经过多少小时后,学生才能回到教室?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商品在近天内每件的销售价格(元)与时间(天)的函数关系是该商品的日销售量(件)与时间(天)的函数关系是,设商品的日销售额为(销售量与价格之积)
(1)求商品的日销售额的解析式;
(2)求商品的日销售额的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有.
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票。股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价(元)和时间的关系在段可近似地用解析式来描述,从点走到今天的点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且点和点正好关于直线对称。老张预计这只股票未来的走势如图中虚线所示,这里段与段关于直线对称,段是股价延续段的趋势(规律)走到这波上升行

情的最高点。现在老张决定取点,点,点来确定解析式中的常数,并且求得
(Ⅰ)请你帮老张算出,并回答股价什么时候见顶(即求点的横坐标)
(Ⅱ)老张如能在今天以点处的价格买入该股票3000股,到见顶处点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某社区要召开群众代表大会,规定各小区每10人推选一名代表,当各小区人数除以10的余数不小于5时再增选一名代表.那么,各小区可推选代表人数y与该小区人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为 (  )
A.y=[]B.y=[]C.y=[]D.y=[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,其中,若对任意的非零实数,存在唯一的非零实数,使得成立,则k的最小值为( )
A.B.5C.6D.8

查看答案和解析>>

同步练习册答案