精英家教网 > 高中数学 > 题目详情

【题目】以下数表构造思路源于我国南宋数学家杨辉所著的《详解九章算法》一书中的“杨辉三角形”.

该表由若干行数字组成,从第二行起,第一行中的数字均等于其“肩上”两数之和,表中最后行仅有一个数,则这个数为(

A.B.C.D.

【答案】C

【解析】

由题意可得出:数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行的公差为4可得:第行的公差为,且第一个数为,即可得出答案.

由题意得:数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行的公差为4,第行的公差为,即第2018行公差为

故第一行的第一个数为:

第二行的第一个数为:

第三行的第一个数为:

第四行的第一个数为:

行的第一个数为:

由题意得数表中共有2018行,

所以第2018行只有一个数,且这个数为:

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆节期间,滕州市实验小学举行了一次科普知识竞赛活动,设置了一等奖、二等奖、三等奖、四等奖及纪念奖,获奖人数的分配情况如图所示,各个奖品的单价分别为:一等奖50元、二等奖20元、三等奖10元,四等奖5元,纪念奖2元,则以下说法中不正确的是(

A.获纪念奖的人数最多B.各个奖项中二等奖的总费用最高

C.购买奖品的费用平均数为6.65D.购买奖品的费用中位数为5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆的上、下顶点分别为,左、右顶点分别为,左、右焦点分别为.原点到直线的距离为.

1)求椭圆的方程;

2是椭圆上异于的任一点,直线,分别交轴于点,若直线与过点的圆相切,切点为,证明:线段的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-m|-|2x+2m|m0).

(Ⅰ)当m=1时,求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()讨论函数的单调性;

()证明: (为自然对数的底)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,己知是椭圆的右焦点,是椭圆上位于轴上方的任意一点,过作垂直于的直线交其右准线于点.

1)求椭圆的方程;

2)若,求证:直线与椭圆相切;

3)在椭圆上是否存在点,使四边形是平行四边形?若存在,求出所有符合条件的点的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线y22pxp0)上一点P12),作两条直线分别交抛物线于Ax1y1),Bx2y2),当PAPB的斜率存在且倾斜角互补时:

1)求y1+y2的值;

2)若直线ABy轴上的截距b[13]时,求ABP面积SABP的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为.

1)若,则在第一轮游戏他们获优秀小组的概率;

2)若则游戏中小明小亮小组要想获得优秀小组次数为次,则理论上至少要进行多少轮游戏才行?并求此时的值.

查看答案和解析>>

同步练习册答案