精英家教网 > 高中数学 > 题目详情
14、垂直于直线2x-6y+1=0且与曲线y=x3+3x2-1相切的直线方程为
-3x-2
分析:设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),根据函数在切点处的导数即为切线的斜率,求出n值,可得切点的坐标,用点斜式求得切线的方程.
解答:解:设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),
则由题意可得3n2+6n=-3,∴n=-1,
故切点为(-1,1),代入切线方程 y=-3x+m可得m=-2,
故设所求的直线方程为y=-3x-2,
故答案为y=-3x-2.
点评:本题考查两直线垂直的性质,两直线垂直斜率之积等于-1,函数在某点的导数的几何意义,求出切点的坐标是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、(文科做)垂直于直线2x-6y+1=0,且与曲线y=x3+3x2-1相切的直线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在曲线y=x2过哪一点的切线,
(1)平行于直线y=4x-5
(2)垂直于直线2x-6y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
32
x2+1
的切线垂直于直线2x+6y+3=0,则这条切线的方程(  )

查看答案和解析>>

同步练习册答案