精英家教网 > 高中数学 > 题目详情
正项数列{an}的前n项和为Sn,q为非零常数.已知对任意正整数n,m,当n>m时,Sn-Sm=qm•Sn-m总成立.
(1)求证:数列{an}是等比数列;
(2)若互不相等的正整数n,m,k成等差数列,比较Sn+Sk,2Sm的大小;
(3)若正整数n,m,k成等差数列,求证:
1
Sn
+
1
Sk
2
Sm
分析:(1)在Sn-Sm=qm•Sn-m中,令m=n-1,得到Sn-Sn-1=qn-1•S1转化证明.
(2)写出Sn+Sk,2Sm的表达式,作差比较,注意求和时,对公比是否为1进行讨论.
(3)写出
1
Sn
+
1
Sk
的表达式,根据式子结构,考虑放缩法进行证明.
解答:解:(1)因为对任意正整数n,m,
当n>m时,Sn-Sm=qm•Sn-m 总成立,
所以n≥2时,令m=n-1,得到Sn-Sn-1=qn-1•S1,即an=a1q n-1
分析可得an-1=a1q n-2
故当n≥2时:
an
an-1
= q
(非零常数),即{an}是等比数列
(2)若q=1,则Sn=na1,Sm=ma1,Sk=ka1
所以Sn+Sk-2Sm=(n+k-2m)a1=0∴Sn+Sk=2Sm
若q>0,q≠1,则
Sn=
a1(1-qn)
1-q
Sm=
a1(1-qm)
1-q
Sk=
a1(1-qk)
1-q

所以Sn+Sk-2Sm=
a1
1-q
[(1-qn)+(1-qk)-2(1-qm)]
=-
a1
1-q
(qn+qk-2qm)
∵q>0,q≠1
qn+qk-2qm>2
qnqk
-2qm=2q
n+k
2
-2qm=0

①若q>1,Sn+Sk>2Sm②若0<q<1,Sn+Sk<2Sm
(3)若q=1,则Sn=na1,Sm=ma1,Sk=ka1
 所以
1
Sn
+
1
Sk
=
n+k
nka1
=
2m
nka1
2m
(
n+k
2
2
a1
=
2m
m2a1
=
2
ma1
=
2
Sm

若∵q>0,q≠1,
所以 
1
Sn
+
1
Sk
≥2
1
SnSk
=2
(1-q)2
(1-qn) (1-qka12

又因为(1-qn)(1-qk)=1-(qn+qk)+qn+k
≤1-2
qn+k
+qn+k
=(1-qm2
所以
1
Sn
+
1
Sk
≥2
(1-q)2
(1-qm)2a12
=
2
Sm

综上可知:若正整数n,m,k成等差数列,不等式 
1
Sn
+
1
Sk
2
Sm

总成立(当且仅当n=m=k时取“=”)
点评:本题考查等比数列通项公式、求和、基本不等式的应用,不等式的证明,分类讨论,一般到特殊的思想方法,以及分析解决、计算等能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,满足Sn=n2
(1)求{an}的通项公式;
(2)设bn=
1
(an+1)(an+1+1)
,求数列{bn}的前n项的和Tn
(3)是否存在自然数m,使得
m-2
4
<Tn
m
5
对一切n∈N*恒成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,且a1=2,an+1=2Sn+2(n∈N*),
(1)求a2以及数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n个数组成一个公差为dn的等差数列.
(ⅰ)求证:
1
d1
+
1
d2
+
1
d3
+…+
1
dn
15
16
(n∈N*);
(ⅱ)求证:在数列{dn}中不存在三项dm,ds,dt成等比数列.(其中m,s,t依次成等比数列)

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项数列{an}的前n项和且Sn
1
2
an2+
1
2
an-1

(1)求an;  
(2)若bn=2n求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和sn=
an2+an
2
bn=(1+
1
2an
)an(n∈N*)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)定理:若函数f(x)在区间D上是凹函数,且f'(x)存在,则当x1>x2(x1,x2∈D)时,总有
f(x1)-f(x2)
x1-x2
<f′(x1)
,请根据上述定理,且已知函数y=xn+1(n∈N*)是(0,+∞)上的凹函数,判断bn与bn+1的大小;
(Ⅲ)求证:
3
2
bn<2

查看答案和解析>>

科目:高中数学 来源: 题型:

设首项为1的正项数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,且Tn=
4-(Sn-p)23
,其中p为常数.
(1)求p的值;
(2)求证:数列{an}为等比数列;
(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.

查看答案和解析>>

同步练习册答案