精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax-1ax+1
(a>1)

(1)判断函数的奇偶性;
(2)求该函数的值域;
(3)证明f(x)是R上的增函数.
分析:(1)用函数的奇偶性定义判断,先求函数的定义域,看是否关于原点对称,若定义域关于原点对称,再判断f(-x)与f(x)是相等还是相反即可
(2)可运用分离常数的办法求此函数的值域,将函数f(x)=
ax-1
ax+1
(a>1)
等价转化为f(x)=1-
2
ax+1
,再由复合函数值域的求法即换元法,求此函数值域即可
(3)先求函数的导函数,再证明导函数恒大于零,即可证明f(x)是R上的增函数,也可用单调性定义证明
解答:解:(1)函数的定义域为R,
f(-x)+f(x)=
a-x-1
a-x+1
+
ax-1
ax+1

=
(ax-1)(a-x+1)+(a-x-1)(ax+1)
(ax+1)(a-x+1)
=0
∴函数f(x)为奇函数  
 (2)∵f(x)=
ax-1
ax+1
=1-
2
ax+1
   (a>1)
设t=ax,则t>0,y=1-
2
t+1
的值域为(-1,1)
∴该函数的值域为(-1,1)
(3)证明:法一:∵f′(x)=
2axlna
(ax+1)2
>0
∴f(x)是R上的增函数
法二:设x1,x2∈R,且x1<x2
则f(x1)-f(x2)=
ax1-1
ax1+1
-
ax2-1
ax2+1
=
2(ax1-ax2)
(ax1+1)(ax2+1) 

∵x1,x2∈R,且x1<x2
ax1-ax2<0,ax1+1>0,ax2+1>0,
2(ax1-ax2)
(ax1+1)(ax2+1)
<0,即f(x1)-f(x2)<0,f(x1)<f(x2
∴f(x)是R上的增函数
点评:本题考察了函数奇偶性的定义和判断方法,求函数值域的方法和证明函数单调性的方法,解题时要准确把握基本概念,熟练的运用转化化归思想解题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案