精英家教网 > 高中数学 > 题目详情
18.小明身高比小强高,小强身高比小丽高,那么小明身高比小丽高,上述描述符号不等式的哪个性质(  )
A.如果a>b,那么b<a;如果b<a,那么a>b
B.如果a>b,b>c,那么a>c
C.如果a>b,那么a+c>b+c
D.如果a>b,c>0,那么ac>bc

分析 由题意可知,描述符号不等式的传递性,问题得以解决.

解答 解:小明身高比小强高,小强身高比小丽高,那么小明身高比小丽高,上述描述符号不等式的传递性,
即如果a>b,b>c,那么a>c,
故选:B.

点评 本题考查了不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.圆x2+y2+2x-4y+m=0的直径为3,则m的值为$\frac{11}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}{|x-1|-2}&{|x|≤1}\\{\frac{1}{1+{x}^{2}}}&{|x|>1}\end{array}\right.$,若f(a)=$\frac{1}{5}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数f(x),g(x)分别是R上的奇函数,偶函数,且 f(x)+g(x)=ex,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解下列各不等式
(1)2x2≥8x-6;
(2)x2-3>$\frac{7x}{4}$-$\frac{1}{4}$;
(3)2x2+3x+5>0;
(4)-x2+3x-3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+$\root{3}{x}$),则f(-1)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=(1+ax2•a-x(a>0,a≠1)是(  )
A.奇函数B.偶函数
C.既是奇函数,又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx+a(x-1)2,其中a∈R.
(1)若f(x)在x=e处的切线斜率为1,求a;
(2)若a>0,g(x)=f(x)-x+1,求g(x)在区间[1,2]的最小值;
(3)令h(x)=f(x)-ax2,对y=h(x)上任意不同的两点,A(x1,y1),B(x2,y2)直线AB的斜率为k,若x1+x2+k>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{1+{(\frac{1}{2})}^{x},(x>0)}\\{2{x}^{2}+3,(x≤0)}\end{array}\right.$的值域为(1,2)∪[3,+∞).

查看答案和解析>>

同步练习册答案