精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,当 时,函数 取得极值 .
(Ⅰ)求函数 的解析式;
(Ⅱ)若方程 有3个不等的实数解,求实数 的取值范围.

【答案】解:(I) ,由题意: , 解得 , 所求的解析式为

(Ⅱ)由(1)可得 ,令 ,得

时, ,当 时, ,当 时, ,因此,当 时,

有极大值 ,当 时, 有极小值 函数 的图象大致如图.

由图可知:


【解析】(1)根据导数的意义,函数在某点有极值则该点的导函数的值为零,然后将x=2代入函数的解析式由此可得关于a与b的方程组,求解即可得出a与b的值,进而得到函数的解析式。(2)结合(1)中的结论,可得到函数的表达式根据导函数等于零求出函数的极值点,根据方程f ( x ) = k 有3个零点即可得到函数f(x) 与直线y=k有三个交点,根据题意作出函数的图像,进而得到k的取值范围。
【考点精析】认真审题,首先需要了解函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,则不等式的解集为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在南北方向有一条公路,一半径为100m的圆形广场(圆心为O)与此公路一边所在直线l相切于点A.点P为北半圆弧(弧APB)上的一点,过P作直线l的垂线,垂足为Q.计划在△PAQ内(图中阴影部分)进行绿化.设△PAQ的面积为S(单位:m2).
(1)设∠BOP=α(rad),将S表示为α的函数;
(2)确定点P的位置,使绿化面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函数.

1)求实数k的值;

2)求函数gx)的定义域;

(3)若函数fx)与gx)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(Ⅰ)求曲线 在点 处的切线方程;
(Ⅱ)若 恒成立,求实数 的取值范围;
(Ⅲ)求整数 的值,使函数 在区间 上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex , g(x)= x2+x+1,则与f(x),g(x)的图象均相切的直线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,4],f(4x)≤g(x),求实数a的取值范围;
(3)设a>﹣2,求函数h(x)=g(x)﹣f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=ax2+2x﹣3在区间(﹣∞,4)上是单调递增的,则实数a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案