精英家教网 > 高中数学 > 题目详情
在△ABC中,已知边c=10,又已知
cosA
cosB
=
b
a
=
4
3
,求a,b及△ABC的内切圆的半径.
根据正弦定理
a
sinA
=
b
sinB
,得
b
a
=
sinB
sinA
,又
cosA
cosB
=
b
a

cosA
cosB
=
sinB
sinA
,即sinAcosA=sinBcosB,
∴sin2A=sin2B,又A,B为三角形的内角,
∴2A=2B或2A+2B=180°,
b
a
=
4
3
,∴A≠B,
∴A+B=90°,即△ABC为直角三角形,且c为斜边,c=10,
根据题意及勾股定理列得:
b
a
=
4
3
a2+b2=c2=100

解得:
a=6
b=8

则△ABC的内切圆半径r=
a+b-c
2
=
6+8-10
2
=2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知边c=10,又已知
cosA
cosB
=
b
a
=
4
3
,求a,b及△ABC的内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知边c=10,又知
cosA
cosB
=
b
a
=
4
3
,求边a、b 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知边c=10, 又知==,求a、b及△ABC的内切圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,已知边c=10,又已知数学公式,求a,b及△ABC的内切圆的半径.

查看答案和解析>>

同步练习册答案