精英家教网 > 高中数学 > 题目详情
8.设f(x)是定义在R上的奇函数,且满足f(x)=f(x+3),若f(-1)=1,f(2015)=$\frac{3a-2}{a+1}$,则实数a=$\frac{1}{4}$.

分析 通过函数的周期,化简f(2015),利用方程的解求出a即可.

解答 解:f(x)是定义在R上的奇函数,且满足f(x)=f(x+3),
可得函数的周期为:3.
f(2015)=f(3×672-1)=f(-1)=1,
f(-1)=1,f(2015)=$\frac{3a-2}{a+1}$=-1,
解得a=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查抽象函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过△ABC的两个顶点A,B,且一个焦点为C,另一个焦点D在线段AB上,若|AB|=8,|AC|=6,|BC|=10,直线y=x+m(m为常数)与椭圆交于点M(x1,y1),N(x2,y2),则x1x2的最小值为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex,g(x)=bx+1(a,b∈R),若f(x)≥g(x)对任意的x∈R恒成立,求b的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A、B、C是△ABC的三个内角,求证:
(1)cos(2A+B+C)=-cosA;
(2)sin$\frac{B+C}{2}$=cos$\frac{A}{2}$;
(3)tan$\frac{A+B}{4}$=-tan$\frac{3π+C}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各组函数中,表示同一函数的是(  )
A.y=lg(1+x)+lgx,y=lg(x+x2B.y=|x|,y=$\sqrt{{x}^{2}}$
C.y=1,y=x0D.y=a${\;}^{lo{g}_{a}x}$,y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)的导函数为f′(x),且满足f(x)=x2+3xf′(2)+lnx,则f′(2)=-$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知α,β为锐角,cosα=$\frac{1}{7}$,sin(α+β)=$\frac{5}{14}$$\sqrt{3}$,求cosβ的值及β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1上的动点.
(Ⅰ)试判断不论点P在AD1上的任何位置,是否都有平面B1PA1垂直于平面AA1D1?并证明你的结论;
(Ⅱ)当P为AD1的中点时,求异面直线AA1与B1P所称角的余弦值;
(Ⅲ)求直线PB1与平面AA1D1所成角的正切值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点G是圆F:(x+2)2+y2=4上任意一点,R(2,0),线段GR的垂直平分线交直线GF于H.
(1)求点H的轨迹C的方程;
(2)点M(1,0),P、Q是轨迹C上的两点,直线PQ过圆心F(-2,0),且F在线段PQ之间,求△PQM面积的最小值.

查看答案和解析>>

同步练习册答案