精英家教网 > 高中数学 > 题目详情

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

(1);(2)当时,的单调递减区间为,单调递增区间为;当时,的单调递减区间为;当时,的单调递减区间为,单调递增区间为;(3).

解析试题分析:(1) 利用导数的几何意义求切线的斜率,再求切点坐标,最后根据点斜式直线方程求切线方程;(2)利用导数的正负分析原函数的单调性,注意在解不等式时需要对参数的范围进行讨论;(3)根据单调性求函数的极值,根据其图像交点的个数确定两个函数极值的大小关系,然后解对应的不等式.
试题解析:(1)因为
所以
所以曲线在点处的切线斜率为.
又因为
所以所求切线方程为,即.         2分
(2)
①若,当时,;当时,.
所以的单调递减区间为
单调递增区间为.                    4分
②若
所以的单调递减区间为.                    5分
③若,当时,;当时,.
所以的单调递减区间为
单调递增区间为.                 7分
(3)由(2)知函数上单调递减,在单调递增,在上单调递减,
所以处取得极小值,在处取得极大值.  8分
,得.
时,;当时,.
所以上单调递增,在单调递减,在上单调递增.
处取得极大值,在处取得极小值. 10分
因为函数与函数的图象有3个不同的交点,
所以,即. 所以.        12分
考点:1.导数的几何意义;2.切线方程;3.利用导数分析函数的单调性4.分类讨论;5.极值6.零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求处切线方程;
(2)求证:函数在区间上单调递减;
(3)若不等式对任意的都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若处取得极值,求常数的值;
(2)设集合,若元素中有唯一的整数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点,并且与曲线相切,求直线的方程;
(3)设函数,其中,求函数上的最小值(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
⑴求证函数上的单调递增;
⑵函数有三个零点,求的值;
⑶对恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线是 
(Ⅰ)求的值;
(Ⅱ)若上单调递增,求的取值范围

查看答案和解析>>

同步练习册答案