精英家教网 > 高中数学 > 题目详情
在直角三角形ABC中,AC=4,BC=3,在斜边AB上任取一点M,则AM小于AC的概率
 
分析:由于点M随机地落在线段AB上,故可以认为点M落在线段AB上任一点是等可能的,可将线段AB看做区域D,以长度为“测度”来计算.
解答:解:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段 AC看做区域d,于是AM小于AC的概率为:
AC
AB
=
4
5

故答案为:
4
5
点评:在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直角三角形ABC中,∠ACB=90°,AB=5,BC=4,AC=3,求三角形ABC绕AB边旋转一周所成几何体的表面积及体积精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角三角形ABC中,AD是斜边BC上的高,有很多大家熟悉的性质,例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“
1
|AD|2
=
1
|AB|2
+
1
|AC|2
”等,由此联想,在三棱锥O-ABC中,若三条侧棱OA,OB,OC两两互相垂直,可以推出哪些结论?至少写出两个结论.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角三角形ABC中,D是斜边BC边上的中点,AC=8cm,BC=6cm,EC⊥平面ABC,EC=12cm,
求 EA,EB,ED的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角三角形ABC中,∠ACB=30°,∠B=90°,D为AC的中点,E为BD的中点,AE的延长线交BC于点F(如图1). 将△ABD沿BD折起,二面角A-BD-C的大小记为θ(如图2).
(Ⅰ)求证:面AEF⊥面BCD;面AEF⊥面BAD;
(Ⅱ)当cosθ为何值时,AB⊥CD;
(Ⅲ)在(Ⅱ)的条件下,求FB与平面BAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•滨州一模)在直角坐标系xOy中,
i
j
,分别是与x轴、y轴正方向同向的单位向量,在直角三角形ABC中,若
AB
=
i
+3
j
AC
=2
i
+k
j
,则“k=1”是“∠C=
π
2
”的(  )

查看答案和解析>>

同步练习册答案