精英家教网 > 高中数学 > 题目详情

【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的看云识天气的经验,并将这些经验编成谚语,如天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证日落云里走,雨在半夜后,观察了所在地区A100天日落和夜晚天气,得到如下列联表:

夜晚天气

日落云里走

下雨

未下雨

出现

25

5

未出现

25

45

临界值表

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

并计算得到,下列小波对地区A天气判断不正确的是(

A.夜晚下雨的概率约为

B.未出现日落云里走夜晚下雨的概率约为

C.的把握认为“‘日落云里走是否出现当晚是否下雨有关

D.出现日落云里走,有的把握认为夜晚会下雨

【答案】D

【解析】

把频率看作概率,即可判断的正误;根据独立性检验可判断的正误,即得答案.

由题意,把频率看作概率可得:

夜晚下雨的概率约为,故正确;

未出现日落云里走夜晚下雨的概率约为,故正确;

,根据临界值表,可得有的把握认为“‘日落云里走是否出现当晚是否下雨有关,故正确;

错误.

故选:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市组织高三全体学生参加计算机操作比赛,等级分为110分,随机调阅了AB两所学校各60名学生的成绩,得到样本数据如下:

B校样本数据统计表:

成绩(分)

1

2

3

4

5

6

7

8

9

10

人数(个)

0

0

0

9

12

21

9

6

3

0

1)计算两校样本数据的均值和方差,并根据所得数据进行比较.

2)从A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E)的离心率为FE的右焦点,过点F的直线交E于点和点.当直线x轴垂直时,.

1)求椭圆E的方程;

2)设直线lx轴于点G,过点Bx轴的平行线交直线l于点C.求证:直线过线段的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数上的单调性;

(2)设,当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若存在,对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中e是自然对数的底数,a)在点处的切线方程是.

1)求函数的单调区间.

2)设函数,若上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,生产线生产的产品为合格品的概率分别为

1)从生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求的最小值

2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.

①已知生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?

②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估计该厂产量2000件时利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数

1)求函数的单调递减区间;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ4cos θ,直线l与圆C交于AB两点.

(1)求圆C的直角坐标方程及弦AB的长;

(2)动点P在圆C(不与AB重合),试求△ABP的面积的最大值.

查看答案和解析>>

同步练习册答案