精英家教网 > 高中数学 > 题目详情

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

【答案】D
【解析】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),

故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.

∵反射光线与圆(x+3)2+(y﹣2)2=1相切,

∴圆心(﹣3,2)到直线的距离d= =1,

化为24k2+50k+24=0,

∴k= 或﹣

所以答案是:D.

【考点精析】认真审题,首先需要了解直线的斜率(一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,只需将函数y=sin2x的图象上所有的点( )
A.向左平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某中草药材的销售量与年份有关,下表是近五年的部分统计数据:

年份

2008

2010

2012

2014

2016

销售量(吨)

114

115

116

116

114

(1)利用所给数据求年销售量与年份之间的回归直线方程

(2)利用(1)中所求出的直线方程预测该地2018年的中草药的销售量.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆

1)过点的圆的切线只有一条,求的值及切线方程;

2)若过点且在两坐标轴上截距相等的直线被圆截得的弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在直线y=4x上,且与直线l:x+y﹣2=0相切于点P(1,1)
(Ⅰ)求圆的方程
(II)直线kx﹣y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量 (O为坐标原点),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知三点A(-1,0)、B(t,2)、C(2,1),t∈RO为坐标原点

(I)若△ABC是∠B为直角的直角三角形,求t的值

(Ⅱ)若四边形ABCD是平行四边形的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱台DEF ABCAB=2DEGH分别为ACBC的中点.

(1)求证:平面ABED∥平面FGH

(2)CFBCABBC求证:平面BCD⊥平面EGH.

查看答案和解析>>

同步练习册答案