精英家教网 > 高中数学 > 题目详情
15.圆锥的底面半径为3,高是4,在这个圆锥内部有一个内切球,则此内切球的半径为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

分析 作出轴截面,利用Rt△AOE∽Rt△ACD,即可求出球的半径OE.

解答 解:如图所示,作出轴截面,
∵CD=3,AD=4,
∴AC=5,∵Rt△AOE∽Rt△ACD,
∴$\frac{OE}{AO}=\frac{CD}{AC}$.
设OE=R,则AO=4-R,
∴$\frac{R}{4-R}=\frac{3}{5}$,
∴R=$\frac{3}{2}$.
故选:A.

点评 本题考查了空间几何体的内切球的半径的计算问题,解题的关键是利用Rt△AOE∽Rt△ACD求出球的半径,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在频率分布直方图中共有11个小矩形,其中中间小矩形的面积是其余小矩形面积之和的4倍,若样本容量为220,则该组的频数是176.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)=x+$\frac{1}{x}$-2,则f(x)=x2-4(x≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足f(a+b)=f(a)•f(b).
(1)求f(0)的值;
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,已知a,b,c分别是角A,B,C的对边,若$\frac{a}{b}$=$\frac{cosB}{cosA}$,试确定△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={1,2,3,m},集合B={4,7,n4,n2+3n},其中m,n∈N+,若x∈A,y∈B,有对应关系f:x→y=px+q是从集合A到集合B的一个函数,且f(1)=4,f(2)=7,试求p,q,m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.分别求下列函数的关系式:
(1)已知f(x)=2x+3,求f(1-x);
(2)已知f(x+1)=x2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.试判断函数y=-x3的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD中,AB∥DC,AB,BC,DC,AD(或其延长线)分别与平面M相交于E,F,G,H,求证:E,F,G,H必在同一直线上.

查看答案和解析>>

同步练习册答案