【题目】已知数列中,,点()在直线y = x上,
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1﹣an﹣1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列为等差数列?若存在,试求出λ的值;若不存在,请说明理由.
【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ)存在λ=2.
【解析】试题分析:(1)根据点在直线 上,可得,代入计算可得的值;(2)利用,及,即可证明数列是等比数列;(3)求得数列的前三项,求得 ,再验证即可求得结论.
试题解析:(Ⅰ)由题意,∵点(n,2an+1﹣an)在直线y=x上,
∴2an+1﹣an=n
∵,∴,
同理,,;
(Ⅱ)证明:∵bn=an+1﹣an﹣1,2an+1﹣an=n
∴bn+1=an+2﹣an+1﹣1=﹣an+1﹣1=(an+1﹣an﹣1)=bn,
∵b1=a2﹣a1﹣1=﹣
∴数列{bn}是以﹣为首项,为公比的等比数列;
(Ⅲ)解:存在λ=2,使数列是等差数列.
由(Ⅱ)知,,,
∵an+1=n﹣1﹣bn=n﹣1+,∴an=n﹣2+,
∴Sn==
由题意,要使数列是等差数列,则
∴2×=﹣λ+,∴λ=2
当λ=2时, =,数列是等差数列
∴当且仅当λ=2时,数列是等差数列.
科目:高中数学 来源: 题型:
【题目】某企业准备投入适当的广告费对产品进行促销,在一年内预计销售量Q(万件)与广告费x(万元)之间的函数关系为Q= (x>1),已知生产该产品的年固定投入为3万元,每生产1万件该产品另需再投入32万元,若每件销售价为“年平均每件生产成本(生产成本不含广告费)的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(年利润=销售收入-成本)
(2)当年广告费为多少万元时,企业的年利润最大?最大年利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.
甲 | 乙 | 原料限额 | |
A(吨) | 3 | 2 | 12 |
B(吨) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是直线与椭圆的一个公共点,分别为该椭圆的左右焦点,设取得最小值时椭圆为.
(I)求椭圆的方程;
(II)已知是椭圆上关于轴对称的两点,是椭圆上异于的任意一点,直线分别与轴交于点,试判断是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(1)若直线与曲线交于两点,求的值;
(2)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)
(1)将表示为的函数;
(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com