精英家教网 > 高中数学 > 题目详情

【题目】已知数列中,,点)在直线y = x上,

(Ⅰ)计算a2,a3,a4的值;

(Ⅱ)令bn=an+1﹣an﹣1,求证:数列{bn}是等比数列;

(Ⅲ)Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列为等差数列?若存在,试求出λ的值;若不存在,请说明理由.

【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ)存在λ=2.

【解析】试题分析:(1)根据点在直线 可得,代入计算可得的值;(2)利用,即可证明数列是等比数列;(3)求得数列的前三项求得 ,再验证即可求得结论.

试题解析:(Ⅰ)由题意,∵点(n,2an+1﹣an)在直线y=x上,

∴2an+1﹣an=n

,∴

同理,

(Ⅱ)证明:∵bn=an+1﹣an﹣1,2an+1﹣an=n

∴bn+1=an+2﹣an+1﹣1=﹣an+1﹣1=(an+1﹣an﹣1)=bn

∵b1=a2﹣a1﹣1=﹣

∴数列{bn}是以﹣为首项,为公比的等比数列;

(Ⅲ)解:存在λ=2,使数列是等差数列.

由(Ⅱ)知,

∵an+1=n﹣1﹣bn=n﹣1+,∴an=n﹣2+

∴Sn==

由题意,要使数列是等差数列,则

∴2×=λ+,∴λ=2

当λ=2时, =,数列是等差数列

∴当且仅当λ=2时,数列是等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1时,求曲线在点处的切线的斜率;

2时,求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业准备投入适当的广告费对产品进行促销在一年内预计销售量Q(万件)与广告费x(万元)之间的函数关系为Q= (x>1)已知生产该产品的年固定投入为3万元每生产1万件该产品另需再投入32万元若每件销售价为“年平均每件生产成本(生产成本不含广告费)150%”与“年平均每件所占广告费的50%”之和

(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(年利润=销售收入-成本)

(2)当年广告费为多少万元时企业的年利润最大?最大年利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线与椭圆的一个公共点,分别为该椭圆的左右焦点,设取得最小值时椭圆为

I求椭圆的方程;

II已知是椭圆上关于轴对称的两点,是椭圆上异于的任意一点,直线分别与轴交于点,试判断是否为定值,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线

1若直线与曲线交于两点,求的值;

2求曲线的内接矩形的周长的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)

1)将表示为的函数;

2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线与椭圆有相同的焦点,实半轴长为

(1)求双曲线的方程;

(2)若直线与双曲线有两个不同的交点,且(其中为原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1求证:平面平面

2,求二面角的大小

查看答案和解析>>

同步练习册答案