精英家教网 > 高中数学 > 题目详情

(本题满分14分)

   先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

  (1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

  (2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

解析:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.

∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是

即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}

∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.   

∴直线ax+by+c=0与圆x2+y2=1相切的概率是         

(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.

∵三角形的一边长为5

∴当a=1时,b=5,(1,5,5)                1种          

当a=2时,b=5,(2,5,5)                  1种          

当a=3时,b=3,5,(3,3,5),(3,5,5)    2种           

当a=4时,b=4,5,(4,4,5),(4,5,5)    2种          

当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),

(5,4,5),(5,5,5),(5,6,5)    6种           

当a=6时,b=5,6,(6,5,5),(6,6,5)     2种           

故满足条件的不同情况共有14种

答:三条线段能围成不同的等腰三角形的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案