精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,,底面为直角梯形,为线段上一点.

I)若,求证:平面

II)若,异面直线角,二面角的余弦值为,求的长及直线与平面所成角的正弦值.

【答案】I)证明见解析;(II,直线与平面所成角的正弦值为.

【解析】

I)过点,交于点,连接,通过证明四边形为平行四边形得出,然后利用线面平行的判定定理可得出结论;

II)证明出平面,过点于点,并以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,利用空间向量法结合二面角的余弦值为求出的值,再利用空间向量法可求出直线与平面所成角的正弦值.

I)过点,交于点,连接

,所以,四边形为平行四边形,则

平面平面平面

II异面直线角,即

平面

,过点于点,以点为坐标原点,所在直线分别为轴建立如下图所示的空间直角坐标系,

,则

设平面的法向量为,则

,则,则

同理可得平面的一个法向量为

由于二面角的余弦值为

,解得

所以,,易知平面的一个法向量为

设直线与平面所成角为,则

因此,直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设盒子中装有6个红球,4个白球,2个黑球,且规定:取出一个红球得分,取出一个白球得分,取出一个黑球得分,其中都为正整数.

1)当时,从该盒子中依次任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求的分布列;

2)当时,从该盒子中任取(每球取到的机会均等)1个球,记随机变量为取出此球所得分数,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点,母线长为的圆锥中,底面圆的直径长为2是圆所在平面内一点,且是圆的切线,连接交圆于点,连接.

1)求证:平面平面

2)若的中点,连接,当二面角的大小为时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,抛物线的焦点恰好是该椭圆的一个顶点.

1)求椭圆的方程;

2)已知圆的切线(直线的斜率存在且不为零)与椭圆相交于两点,那么以为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.

1)试比较甲、乙两班分别抽取的这10名同学身高的中位数大小;

2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高176cm的同学被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学研究表明,人极易受情绪的影响,某选手参加74胜制的兵乒球比赛.

1)在不受情绪的影响下,该选手每局获胜的概率为;但实际上,如果前一句获胜的话,此选手该局获胜的概率可提升到;而如果前一局失利的话,此选手该局获胜的概率则降为,求该选手在前3局获胜局数的分布列及数学期望;

2)假设选手的三局比赛结果互不影响,且三局比赛获胜的概率为,记为锐角的内角,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数在定义域内给定区间上存在,满足,则称函数上的“平均值函数”,是它的一个均值点.例如y=| x |上的“平均值函数”,0就是它的均值点.给出以下命题:

①函数上的“平均值函数”.

②若上的“平均值函数”,则它的均值点x0

③若函数上的“平均值函数”,则实数m的取值范围是

④若是区间[a.b] b>a.1)上的“平均值函数”,是它的一个均值点,则

其中的真命题有_________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1an1nN*).(其中e为自然对数的底数,e2.71828…

1)证明:an1>annN*);

2)设bn1an,是否存在实数M>0,使得b1b2bnM对任意nN*成立?若存在,求出M的一个值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.

现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据:

(1)设的相关系数为的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;

(2)(i)根据(1的选择及表中数据,建立关于的回归方程(系数精确到0.01);

(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元?

附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:

② 参考数据:

查看答案和解析>>

同步练习册答案