设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年四川省成都高新区高三4月统一检测理科数学试卷(解析版) 题型:解答题
设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
查看答案和解析>>
科目:高中数学 来源:2013届河北省高二第二次调研理科数学试卷(解析版) 题型:解答题
(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上.
⑴求椭圆的方程;
⑵设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使.
①试求直线与的斜率的乘积;
②试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
在平面直角坐标系中,已知椭圆()的离心率为,其焦点在圆上.
(1)求椭圆的方程;
(2)设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使.
(i)求证:直线与的斜率之积为定值;
(ii)求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com