精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知直线y=﹣2x+1与圆O:x2+y2=r2(r>0)交于M,N两点,且MN=

(1)求M,N的坐标;

(2)求过O,M,N三点的圆的方程.

【答案】(1);(2)

【解析】

(1)求出圆的圆心到直线到直线的距离结合直线与圆的位置关系可得可解得的值即可得圆的方程联立直线与圆的方程可得的坐标;(2)设过三点的圆的方程为,则有,可解得的值代入圆的方程即可得结果.

(1)根据题意,圆的圆心为(0,0),

圆心O到直线的距离

又由,则,解可得r=1;

则圆的方程为

联立,可解得

M、N的坐标为(0,1)或

(2)由(1)的结论,M、N的坐标为(0,1)或

设过O,M,N三点的圆的方程为

则有

解可得:

则所求圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3x+x2>0},B={x|﹣4<x<﹣1},则(  )
A.A∩B={x|﹣4<x<﹣3}
B.A∪B=R
C.BA
D.AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过定点任作互相垂直的两条直线,分别与轴交于两点,线段中点为,则的最小值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆离心率是,焦点到相应准线的距离是3.

(1)求椭圆的方程;

(2)如图,设A是椭圆的左顶点,动圆过定点E(1,0)和F(7,0),且与直线x=4交于点P,Q.

求证:AP,AQ斜率的积是定值;

AP,AQ分别与椭圆交于点M,N,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线的焦点为.

(1)求抛物线的标准方程;

(2)过的两条直线分别与抛物线交于点(点轴的上方).

①若,求直线的斜率;

②设直线的斜率为,直线的斜率为,若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x反函数为f1(x),若f1(m)+f1(n)=2,则 的最小值为(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边的一半;(3)三内角平分线交于一点; 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的;(3)四面体的六个二面角的平分面交于一点。其中类比推理结论正确的有 ( )

A. (1) B. (1)(2) C. (1)(2)(3) D. 都不对

查看答案和解析>>

同步练习册答案