精英家教网 > 高中数学 > 题目详情

定义在实数集R上的函数数学公式与y轴的交点为A,点A到原点的距离不大于1;
(1)求a的范围;
(2)是否存在这样的区间,使对任意a,f(x)在该区间上为增函数?若存在,求出该区间,若不存在,说明理由.

解:(1)函数图象与y轴交点为(0,a),则|a|≤1,∴-1≤a≤1;------------------(3分)
(2)f'(x)=x2+(a-4)x+2(2-a)=(x-2)a+x2-4x+4,---------------(7分)
令f'(x)>0对任意的a∈[-1,1]恒成立,
即不等式g(a)=(x-2)a+x2-4x+4>0对任意的a∈[-1,1]恒成立,---(9分)
其充要条件是:,------------(11分)
解得x<1,或x>3.--------------(13分)
所以当x∈(-∞,1)或x∈(3,+∞)时,f'(x)>0对任意a∈[-1,1]恒成立,
所以对任意a∈[-1,1]函数f(x)均是单调增函数.--------------(14分)
故存在区间(-∞,1)和(3,+∞),对任意a∈[-1,1],f(x)在该区间内均是单调增函数.
分析:(1)函数图象与y轴交点为(0,a),则|a|≤1,从而可求
(2)对函数求导,由函数f(x)在该区间上为增函数可得f'(x)>0对任意的a∈[-1,1]恒成立,构造关于a的函数g(a)=(x-2)a+x2-4x+4>0对任意的a∈[-1,1]恒成,结合一次函数的性质可求x的范围
点评:本题主要考查了利用导数与函数 的单调性的关系的应用,解题的关键是根据导数的知识得到f'(x)>0对任意的a∈[-1,1]恒成立时,构造关于a的一次函数进行求解,体现了转化的思想在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知f(x)是定义在实数集R上的函数,它的反函数为f-1(x),若f-1(x+a)与f(x+a)互为反函数,且f(a)=a(a为非零常数),则f(2a)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)是定义在实数集R上的函数,那么y=-f(x+2)与y=f(6-x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
与y轴的交点为A,点A到原点的距离不大于1;
(1)求a的范围;
(2)是否存在这样的区间,使对任意a,f(x)在该区间上为增函数?若存在,求出该区间,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年宁夏银川市高二(下)月考数学试卷(理科)(解析版) 题型:解答题

定义在实数集R上的函数与y轴的交点为A,点A到原点的距离不大于1;
(1)求a的范围;
(2)是否存在这样的区间,使对任意a,f(x)在该区间上为增函数?若存在,求出该区间,若不存在,说明理由.

查看答案和解析>>

同步练习册答案