解:(1)函数图象与y轴交点为(0,a),则|a|≤1,∴-1≤a≤1;------------------(3分)
(2)f'(x)=x
2+(a-4)x+2(2-a)=(x-2)a+x
2-4x+4,---------------(7分)
令f'(x)>0对任意的a∈[-1,1]恒成立,
即不等式g(a)=(x-2)a+x
2-4x+4>0对任意的a∈[-1,1]恒成立,---(9分)
其充要条件是:
,------------(11分)
解得x<1,或x>3.--------------(13分)
所以当x∈(-∞,1)或x∈(3,+∞)时,f'(x)>0对任意a∈[-1,1]恒成立,
所以对任意a∈[-1,1]函数f(x)均是单调增函数.--------------(14分)
故存在区间(-∞,1)和(3,+∞),对任意a∈[-1,1],f(x)在该区间内均是单调增函数.
分析:(1)函数图象与y轴交点为(0,a),则|a|≤1,从而可求
(2)对函数求导,由函数f(x)在该区间上为增函数可得f'(x)>0对任意的a∈[-1,1]恒成立,构造关于a的函数g(a)=(x-2)a+x
2-4x+4>0对任意的a∈[-1,1]恒成,结合一次函数的性质可求x的范围
点评:本题主要考查了利用导数与函数 的单调性的关系的应用,解题的关键是根据导数的知识得到f'(x)>0对任意的a∈[-1,1]恒成立时,构造关于a的一次函数进行求解,体现了转化的思想在解题中的应用.