精英家教网 > 高中数学 > 题目详情

【题目】对数是简化繁杂运算的产物.16世纪时,为了简化数值计算,数学家希望将乘除法归结为简单的加减法.当时已经有数学家发现这在某些情况下是可以实现的.

比如,利用以下2的次幂的对应表可以方便地算出的值.

4

5

6

7

8

9

10

11

12

16

32

64

128

256

512

1024

2048

4096

首先,在第二行找到16256;然后找出它们在第一行对应的数,即48,并求它们的和,即12;最后在第一行中找到12,读出其对应的第二行中的数4096,这就是的值.

用类似的方法可以算出的值,首先,在第二行找到4096128;然后找出它们在第一行对应的数,即127,并求它们的______;最后在第一行中找到______,读出其对应的第二行中的数______,这就是.

【答案】 5 32

【解析】

题设中给出的是第一行数的加法与第二行数的乘法的对应关系,类比到所求的问题中就是第一行数的减法与第二行数的除法之间的对应关系,从而可求规定的值.

题设中给出的计算方法是:

第一行数中两数的和与与第二行数的对应的两数的乘积是匹配的,

因此,若在在第二行找到4096128,要求它们的商,

可以找出它们在第一行对应的数,即127,它们的差(5)在第二行中对应的数(32)即为.

故答案为:差,532.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知若满足有四个,则的取值范围为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体中,△为等边三角形,△为等腰直角三角形,平面平面.

1)求证:

2)若,求平面与平面所成的较小的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面,已知,点是棱的中点.

1)求证:平面

2)求二面角的余弦值;

3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点.

1)证明:

2)求直线与平面所成角的正弦值;

3)若为棱上一点,满足,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设是椭圆的左焦点,直线:轴交于点,为椭圆的长轴,已知,且,过点作斜率为直线与椭圆相交于不同的两点

1)当时,线段的中点为,过轴于点,求

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于

(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为 轴的正半轴建系)

)若成等比数列,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为坐标原点O,对称轴为轴,其准线为.

1)求抛物线C的方程;

2)设直线,对任意的抛物线C上都存在四个点到直线l的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(常数).

1)当时,求曲线处的切线方程;

2)讨论函数在区间上零点的个数(为自然对数的底数).

查看答案和解析>>

同步练习册答案