【题目】若数列满足,且存在常数,使得对任意的都有,则称数列为“k控数列”.
(1)若公差为d的等差数列是“2控数列”,求d的取值范围;
(2)已知公比为的等比数列的前n项和为,数列与都是“k控数列”,求q的取值范围(用k表示).
【答案】(1)(2).
【解析】
(1)根据“控数列”的定义得出,则由等差数列的通项公式可得对恒成立,求出公差的取值范围;
(2)由等比数列为“控数列”得,又是“控数列”得,分类讨论求出q的取值范围.
(1)因为公差为的等差数列是“2控数列”,所以,所以,
即,
所以
由得所以,又,所以,
由得:
当时,,所以;
当时,成立;
当时,,又,所以;
综上,,
所以的取值范围是;
(2)因为数列是公比为的等比数列且为“控数列”,所以,显然,故.
易知,要使是“控数列”,
则,
(ⅰ)当时,,
令,则递减,
所以,
所以,即.
要使存在,则得;
(ⅱ)当时,,
令,则递减,,
所以,又,所以,
要使存在,需,得
综上,当时,公比的取值范围是.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中有16个格点(i,j),其中0≤i≤3,0≤j≤3.若在这16个点中任取n个点,这n个点中总存在4个点,这4个点是一个正方形的顶点,求n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线C1:x=﹣2以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,C2极坐标方程为:ρ2﹣2ρcosθ﹣4ρsinθ+4=0.
(1)求C1的极坐标方程和C2的普通方程;
(2)若直线C3的极坐标方程为,设C2与C3的交点为M,N,又C1:x=﹣2与x轴交点为H,求△HMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过椭圆的左、右焦点分别作倾斜角为的直线,且之间的距离为1.
(1)求椭圆的标准方程;
(2)若直线与椭圆只有一个公共点,求点到直线的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2019年亚洲杯前,某商家为了鼓励中国球迷组团到阿联酋支持中国队,制作了3种精美海报,每份中国队球迷礼包中随机装入一份海报,每集齐3种不同的海报就可获得中国队在亚洲杯上所有比赛中的1张门票.现有6名中国队球迷组成的球迷团,每人各买一份中国队球迷礼包,则该球迷团至少获得1张门票的可能情况的种数为( )
A.360B.450C.540D.990
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把一块边长为的正六边形铁皮,沿图中的虚线(虛线与正六边形的对应边垂直)剪去六个全等的四边形(阴影部分),折起六个矩形焊接制成一个正六棱柱形的无盖容器(焊接损耗忽略),设容器的底面边长为.
(1)若,且该容器的表面积为时,在该容器内注入水,水深为,若将一根长度为的玻璃棒(粗细忽略)放入容器内,一端置于处,另一端置于侧棱上,忽略铁皮厚度,求玻璃棒浸人水中部分的长度;
(2)求该容器的底面边长的范围,使得该容器的体积始终不大于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;
(Ⅱ)设点,分别是曲线,上两动点且,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,抛物线上存在一点M,使得直线AM的斜率的最大值为1,圆Q的方程为.
(1)求点M的坐标和C的方程;
(2)若直线l交C于D,E两点且直线MD,ME都与圆Q相切,证明直线l与圆Q相离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)写出曲线C的普通方程和极坐标方程;
(Ⅱ)M,N为曲线C.上两点,若OM⊥ON,求|MN|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com