精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:y=x+m﹣2的图象不经过第二象限,命题q:方程x2+ =1表示焦点在x轴上的椭圆. (Ⅰ)试判断p是q的什么条件;
(Ⅱ)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

【答案】解:由p可得:m﹣2≤0,即m≤2, 由q可得0<1﹣m<1,即0<m<1,
(Ⅰ)∵p推不出q,且qp,
∴p是q的必要不充分条件;
(Ⅱ)∵p∧q为假命题,p∨q为真命题,
∴p,q一真一假,
p真q假时: 或m≥1,
∴m≤0或1≤m≤2,
p假q真时: ,无解,
综上,m≤0或1≤m≤2
【解析】(Ⅰ)分别求出p,q为真时的m的范围,根据充分必要条件的定义判断即可;(Ⅱ)根据p,q一真一假得到关于m的不等式,解出即可.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)设m=n,求X的分布列和均值(数学期望)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形, 平面 ,点的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列两个命题: 函数在[2,+∞)单调递增; 关于的不等式的解集为.若为真命题, 为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象经过点P,0)和相邻的最低点为Q,-2),则fx)的解析式( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)=log2(3-x).

(1)若gx)=f(2+x)+f(2-x),判断gx)的奇偶性;

(2)记hx)是y=f(3-x)的反函数,设ABC是函数hx)图象上三个不同的点,它们的纵坐标依次是mm+2、m+4且m≥1;试求△ABC面积的取值范围,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过P(2,1)且两两互相垂直的直线l1 , l2分别交椭圆 + =1于A,B与C,D.
(1)求|PA||PB|的最值;
(2)求证: + 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数解恰有3个,则(
A.﹣1<a<0
B.0<a<1
C.1<a<3
D.3<a<6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形ABCD的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”.

(1)当矩形ABCD是“美观矩形”时,求矩形周长的取值范围;

(2)就矩形ABCD的一边长x的不同值,讨论矩形是否是“美观矩形”?

查看答案和解析>>

同步练习册答案