精英家教网 > 高中数学 > 题目详情
16.如图,已知四棱锥P-ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.
(Ⅰ)求证:l∥平面ABCD;
(Ⅱ)求证:PB⊥BC.

分析 (Ⅰ)由已知利用线面平行的判定可证BC∥平面PAD,利用线面平行的性质可证BC∥l,进而利用线面平行的判定证明l∥平面ABCD.
(Ⅱ)取AD中点O,连OP、OB,由已知得:OP⊥AD,OB⊥AD,利用线面垂直的判定可证AD⊥平面POB,由BC∥AD,可证BC⊥平面POB,利用线面垂直的性质即可证明BC⊥PB.

解答 (本题满分为12分)
证明:(Ⅰ)∵BC?平面PAD,AD?平面PAD,AD∥BC,
∴BC∥平面PAD…(2分)
又BC?平面PBC,平面PAD∩平面PBC=l,
∴BC∥l.…(4分)
又∵l?平面ABCD,BC?平面ABCD,
∴l∥平面ABCD.…(6分)
(Ⅱ)取AD中点O,连OP、OB,
由已知得:OP⊥AD,OB⊥AD,
又∵OP∩OB=O,
∴AD⊥平面POB,…(10分)
∵BC∥AD,
∴BC⊥平面POB,
∵PB?平面POB,
∴BC⊥PB.…(12分)

点评 本题主要考查了线面平行的判定与性质,线面垂直的判定与性质,考查了数形结合思想,空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.抛物线y2=3x的准线方程是(  )
A.$y=-\frac{3}{4}$B.$x=-\frac{3}{4}$C.$y=-\frac{1}{12}$D.$x=-\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和为Sn
(1)当{an}是等比数列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差数列时,求an
(2)若{an}是等差数列,且S1+a2=3,S2+a3=6,求和:Tn=$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,则f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知球的表面积为64π,则它的体积为(  )
A.16πB.$\frac{256}{3}$πC.36πD.$\frac{100}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方体..中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-$\frac{1}{2}$cos2x,x∈R.
(1)若对于任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a成立,求a的取值范围;
(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,求函数y=g(x)-$\frac{1}{3}$在区间[-2π,4π]内的所有零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设x、y、z分别表示甲、乙、丙3个盒子中的球数..
(1)求掷完3次后,x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的数学期望.

查看答案和解析>>

同步练习册答案