精英家教网 > 高中数学 > 题目详情

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?

【答案】12小时后该城市开始受到台风的侵袭

【解析】

设在t时刻台风中心位于点Q,此时|OP|=300|PQ|=20t

台风侵袭范围的圆形区域半径为10t+60

,可知

cos∠OPQ=cos(θ-45o)= cosθcos45o+sinθsin45o=

△OPQ中,由余弦定理,得

=

=

若城市O受到台风的侵袭,则有|OQ|≤r(t),即

整理,得,解得12≤t≤24,

答:12小时后该城市开始受到台风的侵袭.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的内角ABC的对边长abc成等比数列,,延长BCD,若,则面积的最大值为(

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.

(月份)

1

2

3

4

5

6

7

8

9

10

11

12

17.3

17.9

17.3

15.8

13.7

11.6

10.06

9.5

10.06

11.6

13.7

15.8

1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;

2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调区间;

2)若恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC平面PBC

(2)AB2AC1PA1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.经过任意三点有且只有一个平面.

B.过点有且仅有一条直线与异面直线垂直.

C.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行.

D.与平面相交,则公共点个数为有限个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量(单位:吨)的历史统计数据,得到如下频率分布表:

将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.

(1)求在未来3年里,至多1年污水排放量的概率;(2)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元.为减少损失,现有三种应对方案:

方案一:防治350吨的污水排放,每年需要防治费3.8万元;

方案二:防治310吨的污水排放,每年需要防治费2万元;

方案三:不采取措施.

试比较上述三种文案,哪种方案好,并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若是两个相交平面,则在下列命题中,真命题的序号为( )

若直线,则在平面内一定不存在与直线平行的直线.

若直线,则在平面内一定存在无数条直线与直线垂直.

若直线,则在平面内不一定存在与直线垂直的直线.

若直线,则在平面内一定存在与直线垂直的直线.

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电信公司为了加强新用5G技术的推广使用,为该公司的用户制定了一套5G月消费返流量费的套餐服务方案;当月消费金额不超过100元时,按消费金额的进行返还;当月消费金额超过100元时,除消费金额中的100元仍按进行返还外,若另超出100元的部分消费金额为A元,则超过部分按进行返还,记用户当月返还所得流量费y(单位:),消费金额x(单位:)

1)写出该公司用户月返还所得流量费的函数模型;

2)如果用户小李当月获返还的流量费是12元,那么他这个月的消费金额是多少元?

查看答案和解析>>

同步练习册答案