精英家教网 > 高中数学 > 题目详情
8.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为(  )
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

分析 由三视图可知该几何体为底面为正三角形的直三棱柱,底面三角形的高为3$\sqrt{3}$,棱柱高为4,根据底面高科求出底面周长,代入侧面积公式即可.

解答 解:由三视图可知该几何体为底面为正三角形的直三棱柱,底面三角形的高为3$\sqrt{3}$,棱柱高为4,
设底面边长为x,则x2=($\frac{x}{2}$)2+(3$\sqrt{3}$)2,解得x=6,
∴几何体的侧面积为6×3×4=72.
故选:D.

点评 本题考查了直棱柱的结构特征和面积计算,根据三视图得出棱柱的底面边长是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为$\frac{77π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线my2-x2=1(m∈R)与抛物线y=$\frac{1}{8}$x2有相同的焦点,则该双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为(  )
A.160 cm3B.144cm3C.72cm3D.12 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1,在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ex-x的单调递增区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C上的动点P到两定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若直线l的方程为y=kx-2,其中k<-2,且直线l交曲线C于A,B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A、B、C的对边分别是a、b、c,a=2,函数f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}$x的极大值是cosA.
(1)求A;  
(2)若S△ABC=$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一长方体从一个顶点出发的三条棱长分别为3,$\sqrt{11}$,4,若该长方体的顶点都在一 个球的球面上,则这个球的体积为(  )
A.288πB.144πC.108πD.36π

查看答案和解析>>

同步练习册答案