精英家教网 > 高中数学 > 题目详情
9.为增加产品利润,某工厂想投入资金对机器进一步改造升级,经过市场调查,利润增加值y万元与投入x万元之间满足:y=$\frac{41}{40}x-t{x^2}-ln\frac{x}{10}$,x∈(1,m],当x=10时,y=9.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求利润增加值y取得最大时对应的x的值.

分析 (Ⅰ)x=10时,y=9,代入可得t,即有函数的解析式;
(Ⅱ)求出f(x)的导数,求得单调区间,讨论m>40,m≤40,由单调性即可得到最大值.

解答 解:(Ⅰ)因为当x=10时,y=9,
即$9=\frac{41}{40}×10-t×{10^2}-ln\frac{10}{10}$,
解得$t=\frac{1}{80}$,
所以  $y=\frac{41}{40}x-\frac{x^2}{80}-ln\frac{x}{10},x∈(1,m]$.
(Ⅱ)由(Ⅰ)可得,$f'(x)=\frac{41}{40}-\frac{x}{40}-\frac{1}{x}$
=$-\frac{{{x^2}-41x+40}}{40x}=-\frac{(x-1)(x-40)}{40x}$,
令f′(x)=0,得x=40或x=1(舍去),
当x∈(1,40)时,f'(x)>0,f(x)在(1,40)上是增函数;
当x∈(40,+∞)时,f'(x)<0,f(x)在(40,+∞)上是减函数.
∴当m>40时,
当x∈(1,40)时,f'(x)>0,∴f(x)在(1,40)上是增函数;
当x∈(40,m]时,f'(x)<0,∴f(x)在(40,m]上是减函数,
∴当x=40时,y取得最大值;
当m≤40时,当x∈(1,m)时,f'(x)>0,∴f(x)在(1,m)上是增函数,
∴当x=m时,y取得最大值.

点评 本题考查函数的解析式的求法,注意运用方程的思想,考查函数的最值的求法,注意运用导数,判断单调性,以及分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1-cosα}\\{y=sinα}\end{array}\right.$(α位参数),以坐标原点为极点,x轴的非负半轴为极轴,建立的极坐标系中,曲线C2的方程为ρ=2sinθ.
(1)求C1和C2的普通方程;
(2)求C1和C2公共弦的垂直平分线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2-4x+2y=0与圆C2:x2+y2-2y=0相交于A,B两点.
(1)求过A,B两点且圆心在直线2x+y=2上的圆C的方程;
(2)设P,Q是圆C上两点,且满足|OP|•|OQ|=1,求坐标原点到直线PQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是偶函数,且x>0时,f(x)=x2+ax,若f(-1)=2,则a=1;f(2)的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆上一点与两个焦点的距离之和为10,焦距是函数:f(x)=x2-6x-16的零点.则椭圆的标准方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$或$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了纪念抗日战争胜利70周年,从甲、乙、丙等5名候选民警中选2名作为阅兵安保人员,为9月3号的阅兵提供安保服务,则甲、乙、丙三人中有2人被选中的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{3}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的方程2x2+(2-t)x+2=0的两个实根α,β满足0<α<1<β<2,则实数t的取值范围是6<t<7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,若($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=$\frac{3}{4}$${\overrightarrow{BC}}^{2}$,则$\frac{tanB}{tanC}$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-ax}$在(-∞,1]是增函数,则a的取值范围是[2,+∞).

查看答案和解析>>

同步练习册答案