【题目】已知f(x)=x26x+5. (Ⅰ)求 的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.
【答案】解:(Ⅰ) f(a)+f(3)=(a26a+5)+(326×3+5)=a26a+1
(Ⅱ)解法一:
因为f(x)=x26x+5=(x3)24
又因为x∈[2,6],所以1≤x3≤3,所以0≤(x3)2≤9,
得4≤(x3)24≤5.
所以当x∈[2,6]时,f(x)的值域是[4,5].
解法二:
因为函数f(x)图象的对称轴 ,
所以函数f(x)在区间[2,3]是减函数,在区间[3,6]是增函数.
所以x∈[2,6]时, .
又因为f(2)=226×2+5=3,f(6)=626×6+5=5
所以当x∈[2,6]时f(x)的值域是[4,5].
【解析】(Ⅰ)利用二次函数的解析式,直接求 的值;(Ⅱ)解法一:利用配方法f(x)=x26x+5=(x3)24,求出x3整体的范围,然后求解函数的值域即可.
解法二:求出函数f(x)图象的对称轴利用函数的单调性求解函数的值域即可.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:高中数学 来源: 题型:
【题目】已知a为常数,函数f(x)=xlnx﹣ ax2 .
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1 , x2(x1<x2)
①求实数a的取值范围;
②求证:x1x2>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=logax(a>0且a≠1)在区间[1,2]上的最大值与函数g(x)=﹣ 在区间[1,2]上的最大值互为相反数.
(1)求a的值;
(2)若函数F(x)=f(x2﹣mx﹣m)在区间(﹣∞,1﹣ )上是减函数,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD﹣A1B1C1D1的棱长为1,给出下列四个命题: ①对角线AC1被平面A1BD和平面B1 CD1三等分;
②正方体的内切球、与各条棱相切的球、外接球的表面积之比为1:2:3;
③以正方体的顶点为顶点的四面体的体积都是 ;
④正方体与以A为球心,1为半径的球在该正方体内部部分的体积之比为6:π
其中正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设实数a∈R,函数 是R上的奇函数. (Ⅰ)求实数a的值;
(Ⅱ)当x∈(1,1)时,求满足不等式f(1m)+f(1m2)<0的实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg (a>0)为奇函数,函数g(x)= +b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;
(Ⅲ)当x∈[ , ]时,关于x的不等式f(1﹣x)≤log(x)有解,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,(x>0且a≠1)的图象经过点(﹣2,3).
(Ⅰ)求a的值,并在给出的直角坐标系中画出y=f(x)的图象;
(Ⅱ)若f(x)在区间(m,m+1)上是单调函数,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com