精英家教网 > 高中数学 > 题目详情
15.曲线y=xlnx在点(1,0)处的切线方程是(  )
A.y=x-1B.y=x+1C.y=2x-2D.y=2x+2

分析 求出函数的导数,求得切线的斜率,运用点斜式方程可得切线的方程.

解答 解:y=xlnx的导数为y′=lnx+x•$\frac{1}{x}$=1+lnx,
即有曲线在点(1,0)处的切线斜率为1,
则在点(1,0)处的切线方程为y-0=x-1,
即为y=x-1.
故选A.

点评 本题考查导数的运用:求切线的方程,注意运用导数的几何意义,正确求导和运用点斜式方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=emx-mx2
(1)当m=2时,求曲线y=f(x)在点(0,f(0))处的切线L1的方程;
(2)当m>0时,要使f(x)≥1对一切实数x≥0恒成立,求实数m的取值范围;
(3)求证:$\sum_{i=1}^n{{e^{-i(i+1)}}}<\frac{1}{{\sqrt{e}}}+\frac{1}{3}-\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=$lo{g}_{\frac{1}{3}}{2}^{-1}$,b=ln2,c=${5}^{-\frac{1}{2}}$,则(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx.(a∈R)
(1)当a=0时,求f(x)在x=1处的切线方程;
(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围;
(3)设g(x)=f(x)-2ax,h(x)=x2-2bx+$\frac{19}{6}$.当a=$\frac{2}{3}$时,若对于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x),对任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则(  )
A.f(3)<f(1)<f(2)B.f(1)<f(2)<f(3)C.f(2)<f(1)<f(3)D.f(3)<f(2)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=sinx+sin(x+\frac{π}{2}),x∈R$
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相应x的取值集合;
(3)若f(α)=$\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x0是函数f(x)=ex-$\frac{1}{x}$的一个零点(其中e为自然对数的底数),若x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从某高校男生中随机抽取100名学生,测得他们的身高(单位:cm)情况如下表:
分组频数频率
[160,165)100.10
[165,170)300.30
[170,175)a0.35
[175,180)bc
[180,185]100.10
合计1001.00
(Ⅰ)求a,b,c的值;
(Ⅱ)按表中的身高组别进行分层抽样,从这100名学生中抽取20名担任某国际马拉松志愿者,再从身高不低于175cm的志愿者中随机选出两名担任迎宾工作,求这两名担任迎宾工作的志愿者中至少有一名的身高不低于180cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知1≤a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.

查看答案和解析>>

同步练习册答案