精英家教网 > 高中数学 > 题目详情
3.设f(x)是以2为周期的奇函数,且f(-$\frac{2}{5}$)=3,若sinα=$\frac{\sqrt{5}}{5}$,则f(4cos2α)的值等于-3.

分析 根据sinα=$\frac{\sqrt{5}}{5}$求出4cos2α,根据f(x)的周期性和奇偶性得出答案.

解答 解:cos2α=1-2sin2α=$\frac{3}{5}$,∴4cos2α=$\frac{12}{5}$.
∴f(4cos2α)=f($\frac{12}{5}$)=f($\frac{12}{5}$-2)=f($\frac{2}{5}$)=-f(-$\frac{2}{5}$)=-3.
故答案为-3.

点评 本题考查了三角函数化简求值,函数周期性与奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.直线l垂直于直线y=x+1,原点O到l的距离为1,且l与y轴正半轴有交点,则直线l的方程是(  )
A.x+y-$\sqrt{2}$=0B.x+y+1=0C.x+y-1=0D.x+y+$\sqrt{2}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图为一几何体的三视图,其中这三个视图完全一样,则该几何体的表面积为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,如果输入的x,t均为2,则输出的M等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,-2,2),B(2,-2,-1),C(6,5,2),O为坐标原点,则三棱锥O-ABC的体积为(  )
A.$\frac{65}{3}$B.$\frac{\sqrt{65}}{3}$C.$\frac{\sqrt{65}}{6}$D.$\frac{65}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=lnx+x2-2ax+a2,a属于R.
(1)讨论函数f(x)极值点的情况;
(2)若函数f(x)在[$\frac{1}{2}$,2]上不是单调函数.试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{2}$+y2=1与直线y=x+m交于A、B两点,且|AB|=$\frac{4\sqrt{2}}{3}$,则实数m的值为(  )
A.±1B.±$\frac{1}{2}$C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:(-3a${\;}^{\frac{1}{3}}$•b${\;}^{\frac{2}{3}}$)(a${\;}^{\frac{1}{2}}$•b${\;}^{\frac{1}{2}}$)÷(-2a${\;}^{\frac{5}{6}}$•b${\;}^{\frac{1}{6}}$)=$\frac{3}{2}b$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|x2-2x≥0},集合B={x|2x>1},则A∩B=(  )
A.(0,2]B.[0,2]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

同步练习册答案