精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台ABCA1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为14,侧面A1ABB1⊥底面ABC,并且A1AA1B1,∠AA1B90°

1)平面A1C1B平面ABCl,证明:A1C1l

2)求平面A1C1B与平面ABC所成二面角的正弦值.

【答案】1)见解析(2

【解析】

1)在三棱台中,根据线面平行的判定和性质可得所证结论.(2)建立空间直角坐标系,求出平面A1C1B与平面ABC的法向量,然后求出两向量夹角的余弦值,于是可得所求正弦值.

1)证明:在三棱台ABCA1B1C1中,可得A1C1AC

A1C1平面ABCAC平面ABC

所以A1C1∥平面ABC

A1C1平面A1C1B,平面A1C1B平面ABCl

所以A1C1l

2)根据题意,以AB的中点为原点,ABx轴,OCy轴,建立空间直角坐标系Oxyz,如图所示.

由于

设平面的法向量为

,即

,得

由题意知,平面ABC的法向量为

即平面A1C1B与平面ABC所成二面角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】无穷等差数列的各项均为整数,首项为、公差为是其前项和,是其中的三项,给出下列命题:

①对任意满足条件的,存在,使得一定是数列中的一项;

存在满足条件的数列,使得对任意的成立;

③对任意满足条件的,存在,使得一定是数列中的一项。

其中正确命题的序号为( )

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八大以来,我国新能源产业迅速发展.以下是近几年某新能源产品的年销售量数据:

年份

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

新能源产品年销售(万个)

1.6

6.2

17.7

33.1

55.6

(1)请画出上表中年份代码与年销量的数据对应的散点图,并根据散点图判断.

中哪一个更适宜作为年销售量关于年份代码的回归方程类型;

(2)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程,并预测2019年某新能源产品的销售量(精确到0.01).

参考公式:.

参考数据:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的离心率为,直线交椭圆于两点,,且点在椭圆上,当时,.

(1)求椭圆方程;

(2)试探究四边形的面积是否为定值,若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,其两个顶点和两个焦点构成的四边形面积为

1)求椭圆C的方程;

2)过点的直线l与椭圆C交于AB两点,且点M恰为线段AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的函数图像的两个端点为,向量图像上任意一点,其中,若不等式恒成立,则称函数上满足“范围线性近似”,其中最小正实数称为该函数的线性近似阈值.若函数定义在上,则该函数的线性近似阈值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,以原点0为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线方程中的参数是,且有且只有一个公共点,求的普通方程;

(2)已知点,若曲线方程中的参数是,且相交于两个不同点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研究投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:

试销价格(元)

产品销量(件)

已知变量具有线性相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲/span>;乙;丙,其中有且仅有一位同学的计算结果是正确的.

(1)试判断谁的计算结果正确?求回归方程。

(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取3个,求“理想数据”的个数的分布列和数学期望.

查看答案和解析>>

同步练习册答案