精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中, ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )

A. B. C. D.

【答案】D

【解析】在三棱锥中,因为 ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.

点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.

型】单选题
束】
21

【题目】已知函数,则的大致图象为(

A. B.

C. D.

【答案】A

【解析】时, ,所以单调递增,则B、D错误;

时, ,则单调递减, 单调递增,所以A正确,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点为,其准线与轴交于点.椭圆:分别以为左、右焦点,其离心率,且抛物线和椭圆的一个交点记为.

(1)时,求椭圆的标准方程;

(2)(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是满足下述条件的所有函数组成的集合:对于函数定义域内的任意两个自变量,均有成立.

(1)已知定义域为的函数,求实数的取值范围;

(2)设定义域为的函数,且,求正实数的取值范围;

(3)已知函数的定义域为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下结论错误的是(

A.命题“若,则”的逆否命题为“若,则

B.命题“”是“”的充分条件

C.命题“若,则有实根”的逆命题为真命题

D.命题“,则”的否命题是“,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极小值,则实数等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位: ),现将其分成六组为 后得到如图所示的频率分布直方图.

(1)某小型轿车途经该路段,其速度在以上的概率是多少?

(2)若对车速在 两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,且,则方程在区间上的所有实数根之和最接近下列哪个数( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,且 是边的中点.

(1)求证: 平面

(2)若是线段上的动点(不含端点):问当为何值时,二面角余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,证明:

(2)若关于的方程有且只有一个实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案