精英家教网 > 高中数学 > 题目详情

【题目】现有一块大型的广告宣传版面,其形状是右图所示的直角梯形.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形(点在曲线段上,点在线段上).已知其中曲线段是以为顶点 为对称轴的抛物线的一部分.

(1)建立适当的平面直角坐标系,分别求出曲线段与线段的方程;

(2)求该厂家广告区域的最大面积.

【答案】(1)直角坐标系见解析; 曲线段的方程为:

线段的方程为: .

(2) .

【解析】试题分析:(1)以ABx轴,DAy轴建立平面直角坐标系,则A(0,0),B(6,0),C(6,-12),D(0,-6).设曲线AC的方程x2=-2py,(p>0,0≤x≤6).代入C坐标即可求得p,即可求出曲线段的方程,由DC两点坐标即可求出线段的方程;

(2)设出F点横坐标a,将厂家广告区域的面积表示为a的函数,求出函数的最大值即可.

试题解析:(1)以直线轴,直线轴建立平面直角坐标系(如图所示).

曲线段的方程为:

线段的方程为:

(2)设点,则需,即,

.

则厂家广告区域的面积

,得 .

上是增函数,在上是减函数.

.

∴厂家广告区域的面积最大值是.

点睛:本题利用已知函数模型解决实际问题,关键是合理建系设出点坐标即可表示出面积的表达式,利用导数研究单调性即可求出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且在y轴上截得的弦MN的长为4

(1)求动圆圆心的轨迹C的方程

(2)过点的直线与曲线C交于AB两点,线段AB的垂直平分线与x轴交于点E,0),的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直平行六面体中,为棱上任意一点,为底面(除外)上一点,已知在底面上的射影为,若再增加一个条件,就能得到,现给出以下条件:

;②上;③平面;④直线在平面的射影为同一条直线.其中一定能成为增加条件的是__________.(把你认为正确的都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质监部门从某超市销售的甲、乙两种食用油中分别各随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:

(Ⅰ)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);

(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一桶的质量指标大于20;

(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55,38.45)的桶数,求的数学期望.

注:①同一组数据用该区问的中点值作代表,计算得

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,因此,疫苗在上市前必须经过严格的检测,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如表:现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为

未感染病毒

感染病毒

总计

未注射疫苗

20

x

A

注射疫苗

30

y

B

总计

50

50

100

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

(1)求2×2列联表中的数据的值;

(2)能否有99.9%把握认为注射此种疫苗有效?

附:nabcd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质;对任意的,与两数中至少有一个属于

1)分别判断数集是否具有性质,并说明理由;

2)证明:,且

3)当时,若,求集合

查看答案和解析>>

同步练习册答案