精英家教网 > 高中数学 > 题目详情
请在下面两题中,任选一题作答:
(1)(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=l,则圆O的半径R=
3
3

(2)(坐标系与参数方程选做题)已知在极坐标系下两圆的极坐标方程分别为ρ=cosθ,ρ=
3
sinθ
,则此两圆的圆心距为
1
1
分析:(1)连接AB,根据弦切角定理及三角形相似的判定,我们易得△PBA∽△PAC,再由相似三角形的性质,我们可以建立未知量与已知量之间的关系式,解方程即可求解.
(2)把极坐标方程化为直角坐标方程,求出两圆的圆心坐标,利用两点间的距离公式求出此两圆的圆心距.
解答:解:(1)依题意,我们知道△PBA∽△PAC,
由相似三角形的对应边成比例性质我们有
PA
2R
=
PB
AB

即R=
PA•AB
2PB
=
2
22-12
2×1
=
3

故答案为:
3

(2)ρ=cosθ   即 ρ2=ρcosθ,即x2+y2=x,即 (x-
1
2
)2+y2=
1
4

表示以M(
1
2
,0)为圆心,以
1
2
为半径的圆.
ρ=
3
sinθ 即 ρ2=
3
ρ•sinθ,x2+y2=
3
y,即 x2+(y-
3
2
)2=
3
4

表示以N(0,
3
2
)为圆心,以
3
2
为半径的圆.
故两圆的圆心距|MN|=
(
1
2
-0)2+(0-
3
2
)2
=1,
故答案为:1.
点评:(1)考查圆的切线性质、切割线定理或射影定理,(2)考查极坐标方程与普通方程的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(考生注意:请在下面两题中任选一题作答,如果都做,则按所做第1题评分)
(1)(坐标系与参数方程选做题)
曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上的点到曲线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)
上的点的最短距离为
1
1

(2)(几何证明选讲选做题)
如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=1,则AD的长为
3
3

查看答案和解析>>

科目:高中数学 来源:2010年浙江省宁波市八校联考高二第二学期期末数学(理)试题 题型:解答题

(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)

甲题 :

(1)若关于的不等式的解集不是空集,求实数的取值范围;

(2)已知实数,满足,求最小值.

乙题:

已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数)。

(1)将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;

(2) 若过定点的直线与曲线C相交于AB两点,且,试求实数的值。

 

查看答案和解析>>

科目:高中数学 来源:2012年湖北省黄冈市英山一中高考数学模拟试卷1(理科)(解析版) 题型:解答题

请在下面两题中,任选一题作答:
(1)(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=l,则圆O的半径R=   
(2)(坐标系与参数方程选做题)已知在极坐标系下两圆的极坐标方程分别为,则此两圆的圆心距为   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市黄州一中高三(下)高考交流数学试卷(理科)(解析版) 题型:解答题

(考生注意:请在下面两题中任选一题作答,如果都做,则按所做第1题评分)
(1)(坐标系与参数方程选做题)
曲线C1(θ为参数)上的点到曲线C2上的点的最短距离为   
(2)(几何证明选讲选做题)
如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=1,则AD的长为   

查看答案和解析>>

同步练习册答案