精英家教网 > 高中数学 > 题目详情
已知函数f(x)=m-
1
1+ax
(a>0且a≠1,m∈R)
是奇函数.
(1)求m的值.
(2)当a=2时,解不等式0<f(x2-x-2)<
1
6
分析:(1)由于函数是定义在R上的奇函数,故可得出f(0)=m-
1
1+a0
=0
,由此方程解出参数m的值.
(2)此不等式是一个复合型的不等式,直接求解较难可先解出外层函数对应的不等式的解集,再求内层函数对应不等式的解集即可得出所求不等式的解集.
解答:解:(1)由题意,函数f(x)=m-
1
1+ax
(a>0且a≠1,m∈R)
是奇函数.
f(0)=m-
1
1+a0
=0
,解得m=
1
2

(2)由于a=2,结合(1)可得f(x)=
1
2
-
1
1+2x
=
2x-1
2(1+2x)

令0<
2x-1
2(1+2x)
1
6
,整理得1<2x<2,解得0<x<1
再令0<x2-x-2<1,解得x∈(
1-
13
2
,-1)∪(2,
1+
13
2
)

故不等式0<f(x2-x-2)<
1
6
的解集是(
1-
13
2
,-1)∪(2,
1+
13
2
)
点评:本题考查指数函数的性质及函数奇偶性,解题的关键是熟练掌握理解函数的性质,建立方程解出相应参数,利用函数的单调性解不等式是函数单调性的一个重要运用,本题中所给的不等式是一个复合型的不等式,直接求解较困难,故本题采取了分步求解的策略,解题中注意借鉴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m-
22x+1
是R上的奇函数,
(1)求m的值;
(2)先判断f(x)的单调性,再证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知函数f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m•3x-1
3x+1
是定义在实数集R上的奇函数.
(1)求实数m的值;
(2)若x满足不等式4x+
1
2
-5•2x+1+8≤0
,求此时f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(sinx+cosx)4+
1
2
cos4x
x∈[0,
π
2
]
时有最大值为
7
2
,则实数m的值为
 

查看答案和解析>>

同步练习册答案